Suppr超能文献

将域计算流体动力学转移到与心脏形态发生的胚胎模型接口。

Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.

机构信息

Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.

出版信息

PLoS One. 2013 Aug 23;8(8):e72924. doi: 10.1371/journal.pone.0072924. eCollection 2013.

Abstract

Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS) and pressure gradients (∇P) across the atrioventricular (AV) canal. Zebrafish (Danio rerio) are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP) (y1) transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD) model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV) across the atrioventricular (AV) canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf), simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6), whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.

摘要

胚胎心脏管的蠕动收缩在房室(AV)管腔产生时变的壁面切应力(WSS)和压力梯度(∇P)。斑马鱼(Danio rerio)是一种可用于研究心脏发生的遗传上易于操作的系统。使用 Tg(fli1a:EGFP)(y1)转基因胚胎可以对心内膜进行描绘和二维重建。然后,将这种时变的壁面运动规定在二维运动域计算流体动力学(CFD)模型中,为心脏发育过程中 WSS 和 ∇P 的时空变化提供了新的见解。通过在房室(AV)管腔上进行粒子图像测速(PIV)对 CFD 模拟进行了验证,结果显示在早期到后期阶段,心腔速度和心率增加,但心房收缩持续时间减少。在受精后 20-30 小时(hpf),模拟结果显示,由于壁的蠕动运动,心脏管腔中的 AV 管腔内存在双向 WSS。在 40-50 hpf 时,管腔结构经历心脏环化,同时 WSS 幅度增加近 3 倍。在 110-120 hpf 时,形成了明显的 AV 瓣、心房、心室和动脉干,同时 WSS 幅度和 ∇P 逐渐增加,但双向流动减少。在 20-30 hpf 时,AV 管腔上出现层流,并持续到 110-120 hpf。AV 管腔的雷诺数从 20-30 hpf 的 0.07±0.03 增加到 110-120 hpf 的 0.23±0.07(p<0.05,n=6),而沃默斯利数从 0.11 到 0.13 相对不变。我们的运动域模拟强调了与心脏发生相关的血液动力学变化;从而为补充成像分析提供了一种 2-D 定量方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验