Department of Materials Science and Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States.
ACS Nano. 2015 Oct 27;9(10):10482-8. doi: 10.1021/acsnano.5b04712. Epub 2015 Sep 28.
The remarkable properties of black TiO2 are due to its disordered surface shell surrounding a crystalline core. However, the chemical composition and the atomic and electronic structure of the disordered shell and its relationship to the core remain poorly understood. Using advanced transmission electron microscopy methods, we show that the outermost layer of black TiO2 nanoparticles consists of a disordered Ti2O3 shell. The measurements show a transition region that connects the disordered Ti2O3 shell to the perfect rutile core consisting first of four to five monolayers of defective rutile, containing clearly visible Ti interstitial atoms, followed by an ordered reconstruction layer of Ti interstitial atoms. Our data suggest that this reconstructed layer presents a template on which the disordered Ti2O3 layers form by interstitial diffusion of Ti ions. In contrast to recent reports that attribute TiO2 band-gap narrowing to the synergistic action of oxygen vacancies and surface disorder of nonspecific origin, our results point to Ti2O3, which is a narrow-band-gap semiconductor. As a stoichiometric compound of the lower oxidation state Ti(3+) it is expected to be a more robust atomic structure than oxygen-deficient TiO2 for preserving and stabilizing Ti(3+) surface species that are the key to the enhanced photocatalytic activity of black TiO2.
黑 TiO2 的显著特性归因于其围绕结晶核的无序表面壳层。然而,无序壳层的化学组成、原子和电子结构及其与核的关系仍未得到很好的理解。我们使用先进的透射电子显微镜方法表明,黑 TiO2 纳米颗粒的最外层由无序的 Ti2O3 壳层组成。测量结果显示出一个连接无序 Ti2O3 壳层和完美金红石核的过渡区域,该核由最初包含明显可见的 Ti 间隙原子的四到五个金红石单层的缺陷金红石组成,随后是 Ti 间隙原子的有序重构层。我们的数据表明,这个重构层提供了一个模板,Ti 离子通过间隙扩散在其上形成无序的 Ti2O3 层。与最近的报告相反,后者将 TiO2 带隙变窄归因于氧空位和非特定来源的表面无序的协同作用,我们的结果表明,Ti2O3 是一种窄带隙半导体。作为低氧化态 Ti(3+)的化学计量化合物,它有望比缺氧 TiO2 具有更稳健的原子结构,从而保持和稳定 Ti(3+)表面物种,这是增强黑 TiO2 光催化活性的关键。