Guo Silu, Yun Hwanhui, Nair Sreejith, Jalan Bharat, Mkhoyan K Andre
Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA.
Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.
Nat Commun. 2023 Sep 26;14(1):6005. doi: 10.1038/s41467-023-41781-x.
Rich electron-matter interactions fundamentally enable electron probe studies of materials such as scanning transmission electron microscopy (STEM). Inelastic interactions often result in structural modifications of the material, ultimately limiting the quality of electron probe measurements. However, atomistic mechanisms of inelastic-scattering-driven transformations are difficult to characterize. Here, we report direct visualization of radiolysis-driven restructuring of rutile TiO under electron beam irradiation. Using annular dark field imaging and electron energy-loss spectroscopy signals, STEM probes revealed the progressive filling of atomically sharp nanometer-wide cracks with striking atomic resolution detail. STEM probes of varying beam energy and precisely controlled electron dose were found to constructively restructure rutile TiO according to a quantified radiolytic mechanism. Based on direct experimental observation, a "two-step rolling" model of mobile octahedral building blocks enabling radiolysis-driven atomic migration is introduced. Such controlled electron beam-induced radiolytic restructuring can be used to engineer novel nanostructures atom-by-atom.
丰富的电子与物质相互作用从根本上推动了对材料的电子探针研究,如扫描透射电子显微镜(STEM)。非弹性相互作用常常导致材料的结构改变,最终限制了电子探针测量的质量。然而,非弹性散射驱动转变的原子机制很难被表征。在此,我们报告了在电子束辐照下金红石型TiO₂辐射分解驱动的结构重组的直接可视化。利用环形暗场成像和电子能量损失谱信号,STEM探针以惊人的原子分辨率细节揭示了原子级尖锐的纳米宽裂缝的逐渐填充。发现不同束能量和精确控制电子剂量的STEM探针根据量化的辐射分解机制对金红石型TiO₂进行建设性的结构重组。基于直接实验观察,引入了一个由移动八面体构建块组成的“两步滚动”模型,该模型能够实现辐射分解驱动的原子迁移。这种受控的电子束诱导辐射分解重组可用于逐个原子地设计新型纳米结构。