Suppr超能文献

自然语言处理能否提高疫苗不良事件报告审查的效率?

Can Natural Language Processing Improve the Efficiency of Vaccine Adverse Event Report Review?

作者信息

Baer B, Nguyen M, Woo E J, Winiecki S, Scott J, Martin D, Botsis T, Ball R

机构信息

Bethany Baer, FDA Center for Biologics Evaluation and Research, 10903 New Hampshire Ave, WO71-1323, Silver Spring, MD 20993-0002, 240-402-8584, USA, E-mail:

出版信息

Methods Inf Med. 2016;55(2):144-50. doi: 10.3414/ME14-01-0066. Epub 2015 Sep 23.

Abstract

BACKGROUND

Individual case review of spontaneous adverse event (AE) reports remains a cornerstone of medical product safety surveillance for industry and regulators. Previously we developed the Vaccine Adverse Event Text Miner (VaeTM) to offer automated information extraction and potentially accelerate the evaluation of large volumes of unstructured data and facilitate signal detection.

OBJECTIVE

To assess how the information extraction performed by VaeTM impacts the accuracy of a medical expert's review of the vaccine adverse event report.

METHODS

The "outcome of interest" (diagnosis, cause of death, second level diagnosis), "onset time," and "alternative explanations" (drug, medical and family history) for the adverse event were extracted from 1000 reports from the Vaccine Adverse Event Reporting System (VAERS) using the VaeTM system. We compared the human interpretation, by medical experts, of the VaeTM extracted data with their interpretation of the traditional full text reports for these three variables. Two experienced clinicians alternately reviewed text miner output and full text. A third clinician scored the match rate using a predefined algorithm; the proportion of matches and 95% confidence intervals (CI) were calculated. Review time per report was analyzed.

RESULTS

Proportion of matches between the interpretation of the VaeTM extracted data, compared to the interpretation of the full text: 93% for outcome of interest (95% CI: 91-94%) and 78% for alternative explanation (95% CI: 75-81%). Extracted data on the time to onset was used in 14% of cases and was a match in 54% (95% CI: 46-63%) of those cases. When supported by structured time data from reports, the match for time to onset was 79% (95% CI: 76-81%). The extracted text averaged 136 (74%) fewer words, resulting in a mean reduction in review time of 50 (58%) seconds per report.

CONCLUSION

Despite a 74% reduction in words, the clinical conclusion from VaeTM extracted data agreed with the full text in 93% and 78% of reports for the outcome of interest and alternative explanation, respectively. The limited amount of extracted time interval data indicates the need for further development of this feature. VaeTM may improve review efficiency, but further study is needed to determine if this level of agreement is sufficient for routine use.

摘要

背景

对自发不良事件(AE)报告进行个案审查仍然是行业和监管机构进行医疗产品安全监测的基石。此前,我们开发了疫苗不良事件文本挖掘工具(VaeTM),以实现自动化信息提取,并有可能加快对大量非结构化数据的评估,促进信号检测。

目的

评估VaeTM进行的信息提取如何影响医学专家对疫苗不良事件报告审查的准确性。

方法

使用VaeTM系统从疫苗不良事件报告系统(VAERS)的1000份报告中提取不良事件的“关注结果”(诊断、死亡原因、二级诊断)、“发病时间”和“其他解释”(药物、病史和家族史)。我们将医学专家对VaeTM提取数据的解读与他们对这三个变量的传统全文报告的解读进行了比较。两名经验丰富的临床医生交替审查文本挖掘工具的输出和全文。第三名临床医生使用预定义算法对匹配率进行评分;计算匹配比例和95%置信区间(CI)。分析每份报告的审查时间。

结果

与全文解读相比,VaeTM提取数据解读之间的匹配比例:关注结果为93%(95%CI:91-94%),其他解释为78%(95%CI:75-81%)。在14%的病例中使用了提取的发病时间数据,其中54%(95%CI:46-63%)的病例与之匹配。当有报告中的结构化时间数据支持时,发病时间的匹配率为79%(95%CI:76-81%)。提取的文本平均字数减少了136个(74%),每份报告的审查时间平均减少了50秒(58%)。

结论

尽管字数减少了74%,但VaeTM提取数据得出的临床结论在关注结果和其他解释方面分别在93%和78%的报告中与全文一致。提取的时间间隔数据量有限表明该功能需要进一步开发。VaeTM可能会提高审查效率,但需要进一步研究以确定这种一致程度是否足以用于常规用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验