Suppr超能文献

疫苗不良事件文本挖掘系统,用于从疫苗安全报告中提取特征。

Vaccine adverse event text mining system for extracting features from vaccine safety reports.

机构信息

Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland, USA.

出版信息

J Am Med Inform Assoc. 2012 Nov-Dec;19(6):1011-8. doi: 10.1136/amiajnl-2012-000881. Epub 2012 Aug 25.

Abstract

OBJECTIVE

To develop and evaluate a text mining system for extracting key clinical features from vaccine adverse event reporting system (VAERS) narratives to aid in the automated review of adverse event reports.

DESIGN

Based upon clinical significance to VAERS reviewing physicians, we defined the primary (diagnosis and cause of death) and secondary features (eg, symptoms) for extraction. We built a novel vaccine adverse event text mining (VaeTM) system based on a semantic text mining strategy. The performance of VaeTM was evaluated using a total of 300 VAERS reports in three sequential evaluations of 100 reports each. Moreover, we evaluated the VaeTM contribution to case classification; an information retrieval-based approach was used for the identification of anaphylaxis cases in a set of reports and was compared with two other methods: a dedicated text classifier and an online tool.

MEASUREMENTS

The performance metrics of VaeTM were text mining metrics: recall, precision and F-measure. We also conducted a qualitative difference analysis and calculated sensitivity and specificity for classification of anaphylaxis cases based on the above three approaches.

RESULTS

VaeTM performed best in extracting diagnosis, second level diagnosis, drug, vaccine, and lot number features (lenient F-measure in the third evaluation: 0.897, 0.817, 0.858, 0.874, and 0.914, respectively). In terms of case classification, high sensitivity was achieved (83.1%); this was equal and better compared to the text classifier (83.1%) and the online tool (40.7%), respectively.

CONCLUSION

Our VaeTM implementation of a semantic text mining strategy shows promise in providing accurate and efficient extraction of key features from VAERS narratives.

摘要

目的

开发和评估一个从疫苗不良事件报告系统(VAERS)报告中提取关键临床特征的文本挖掘系统,以帮助自动审查不良事件报告。

设计

根据对 VAERS 审查医师的临床意义,我们定义了主要(诊断和死亡原因)和次要特征(如症状)用于提取。我们基于语义文本挖掘策略构建了一个新颖的疫苗不良事件文本挖掘(VaeTM)系统。使用总共 300 份 VAERS 报告,在三个 100 份报告的连续评估中评估了 VaeTM 的性能。此外,我们评估了 VaeTM 对病例分类的贡献;基于信息检索的方法用于在一组报告中识别过敏反应病例,并与另外两种方法进行了比较:专门的文本分类器和在线工具。

测量

VaeTM 的性能指标是文本挖掘指标:召回率、精度和 F 度量。我们还进行了定性差异分析,并根据上述三种方法计算了过敏反应病例分类的灵敏度和特异性。

结果

VaeTM 在提取诊断、二级诊断、药物、疫苗和批次号特征方面表现最佳(第三评估的宽松 F 度量分别为 0.897、0.817、0.858、0.874 和 0.914)。在病例分类方面,实现了高灵敏度(83.1%),与文本分类器(83.1%)和在线工具(40.7%)相当或更好。

结论

我们的语义文本挖掘策略的 VaeTM 实现有望提供从 VAERS 报告中提取关键特征的准确高效方法。

相似文献

1
Vaccine adverse event text mining system for extracting features from vaccine safety reports.
J Am Med Inform Assoc. 2012 Nov-Dec;19(6):1011-8. doi: 10.1136/amiajnl-2012-000881. Epub 2012 Aug 25.
2
3
Text mining for the Vaccine Adverse Event Reporting System: medical text classification using informative feature selection.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):631-8. doi: 10.1136/amiajnl-2010-000022. Epub 2011 Jun 27.
4
Can Natural Language Processing Improve the Efficiency of Vaccine Adverse Event Report Review?
Methods Inf Med. 2016;55(2):144-50. doi: 10.3414/ME14-01-0066. Epub 2015 Sep 23.
9
Data mining in the US using the Vaccine Adverse Event Reporting System.
Drug Saf. 2006;29(5):375-84. doi: 10.2165/00002018-200629050-00002.

引用本文的文献

1
How important is domain-specific language model pretraining and instruction finetuning for biomedical relation extraction?
Nat Lang Process Inf Syst. 2026;15836:80-94. doi: 10.1007/978-3-031-97141-9_6. Epub 2025 Jul 1.
2
Computational tools and data integration to accelerate vaccine development: challenges, opportunities, and future directions.
Front Immunol. 2025 Mar 7;16:1502484. doi: 10.3389/fimmu.2025.1502484. eCollection 2025.
4
Consumers' Opinions towards Public Health Effects of Online Games: An Empirical Study Based on Social Media Comments in China.
Int J Environ Res Public Health. 2022 Oct 6;19(19):12793. doi: 10.3390/ijerph191912793.
5
"Artificial Intelligence" for Pharmacovigilance: Ready for Prime Time?
Drug Saf. 2022 May;45(5):429-438. doi: 10.1007/s40264-022-01157-4. Epub 2022 May 17.
6
A scholarly network of AI research with an information science focus: Global North and Global South perspectives.
PLoS One. 2022 Apr 15;17(4):e0266565. doi: 10.1371/journal.pone.0266565. eCollection 2022.
7
Text Mining of Adverse Events in Clinical Trials: Deep Learning Approach.
JMIR Med Inform. 2021 Dec 24;9(12):e28632. doi: 10.2196/28632.
8
Augmenting aer2vec: Enriching distributed representations of adverse event report data with orthographic and lexical information.
J Biomed Inform. 2021 Jul;119:103833. doi: 10.1016/j.jbi.2021.103833. Epub 2021 Jun 8.
10
The Voice of Drug Consumers: Online Textual Review Analysis Using Structural Topic Model.
Int J Environ Res Public Health. 2020 May 22;17(10):3648. doi: 10.3390/ijerph17103648.

本文引用的文献

1
Text mining for the Vaccine Adverse Event Reporting System: medical text classification using informative feature selection.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):631-8. doi: 10.1136/amiajnl-2010-000022. Epub 2011 Jun 27.
2
3
MedEx: a medication information extraction system for clinical narratives.
J Am Med Inform Assoc. 2010 Jan-Feb;17(1):19-24. doi: 10.1197/jamia.M3378.
4
Rule-based information extraction from patients' clinical data.
J Biomed Inform. 2009 Oct;42(5):923-36. doi: 10.1016/j.jbi.2009.07.007. Epub 2009 Jul 29.
5
Building a semantically annotated corpus of clinical texts.
J Biomed Inform. 2009 Oct;42(5):950-66. doi: 10.1016/j.jbi.2008.12.013. Epub 2009 Jan 23.
6
ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports.
J Biomed Inform. 2009 Oct;42(5):839-51. doi: 10.1016/j.jbi.2009.05.002. Epub 2009 May 10.
7
Automatically extracting cancer disease characteristics from pathology reports into a Disease Knowledge Representation Model.
J Biomed Inform. 2009 Oct;42(5):937-49. doi: 10.1016/j.jbi.2008.12.005. Epub 2008 Dec 27.
9
Corpus annotation for mining biomedical events from literature.
BMC Bioinformatics. 2008 Jan 8;9:10. doi: 10.1186/1471-2105-9-10.
10
Anaphylaxis: case definition and guidelines for data collection, analysis, and presentation of immunization safety data.
Vaccine. 2007 Aug 1;25(31):5675-84. doi: 10.1016/j.vaccine.2007.02.064. Epub 2007 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验