Suppr超能文献

任务需求:为现实世界的决策支持重新构建临床自然语言处理研究的范例。

Tasks as needs: reframing the paradigm of clinical natural language processing research for real-world decision support.

机构信息

Faculty of Engineering and IT, School of Computing and Information Systems, University of Melbourne, Melbourne, Australia.

STEM College, School of Computing Technologies, RMIT University, Melbourne, Australia.

出版信息

J Am Med Inform Assoc. 2022 Sep 12;29(10):1810-1817. doi: 10.1093/jamia/ocac121.

Abstract

Electronic medical records are increasingly used to store patient information in hospitals and other clinical settings. There has been a corresponding proliferation of clinical natural language processing (cNLP) systems aimed at using text data in these records to improve clinical decision-making, in comparison to manual clinician search and clinical judgment alone. However, these systems have delivered marginal practical utility and are rarely deployed into healthcare settings, leading to proposals for technical and structural improvements. In this paper, we argue that this reflects a violation of Friedman's "Fundamental Theorem of Biomedical Informatics," and that a deeper epistemological change must occur in the cNLP field, as a parallel step alongside any technical or structural improvements. We propose that researchers shift away from designing cNLP systems independent of clinical needs, in which cNLP tasks are ends in themselves-"tasks as decisions"-and toward systems that are directly guided by the needs of clinicians in realistic decision-making contexts-"tasks as needs." A case study example illustrates the potential benefits of developing cNLP systems that are designed to more directly support clinical needs.

摘要

电子病历越来越多地被用于存储医院和其他临床环境中的患者信息。为了利用这些记录中的文本数据来改善临床决策,而不仅仅是依靠临床医生的手动搜索和临床判断,相应地出现了大量临床自然语言处理 (cNLP) 系统。然而,这些系统的实际效用有限,很少被部署到医疗保健环境中,因此有人提出了技术和结构方面的改进建议。在本文中,我们认为这反映了对弗里德曼“生物医学信息学基本定理”的违反,并且 cNLP 领域必须发生更深层次的认识论转变,作为任何技术或结构改进的并行步骤。我们建议研究人员不再独立于临床需求来设计 cNLP 系统,在这种系统中,cNLP 任务本身就是目的——“任务即决策”,而是转向直接由现实决策环境中临床医生的需求指导的系统——“任务即需求”。一个案例研究示例说明了开发旨在更直接支持临床需求的 cNLP 系统的潜在好处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f1c/9471702/07895f2c2806/ocac121f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验