Suppr超能文献

一种使用多类、多标签和基于集成的机器学习范式进行心血管风险分层的强大范式:叙述性综述。

A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review.

作者信息

Suri Jasjit S, Bhagawati Mrinalini, Paul Sudip, Protogerou Athanasios D, Sfikakis Petros P, Kitas George D, Khanna Narendra N, Ruzsa Zoltan, Sharma Aditya M, Saxena Sanjay, Faa Gavino, Laird John R, Johri Amer M, Kalra Manudeep K, Paraskevas Kosmas I, Saba Luca

机构信息

Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA.

Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India.

出版信息

Diagnostics (Basel). 2022 Mar 16;12(3):722. doi: 10.3390/diagnostics12030722.

Abstract

Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks.

摘要

心血管疾病(CVD)是全球致死率最高的疾病。随着医疗成本的不断攀升,早期非侵入性CVD风险评估至关重要。与近期快速发展的人工智能(AI)方法相比,传统方法表现不佳。本研究回顾了CVD风险评估的三种最新范式,即基于办公室环境和压力测试实验室的多类、多标签和基于集成的方法。使用系统评价和荟萃分析的首选报告项目(PRISMA)模型共筛选出265项基于CVD的研究。由于其受欢迎程度和近期的发展,该研究使用机器学习(ML)框架分析了上述三种范式。我们在CVD框架中,从架构、应用、优缺点、科学验证、临床评估和AI偏倚风险(RoB)等属性方面全面回顾了这三种方法。然后,这些ML技术在移动和基于云的基础设施下得到了扩展。最常用的生物标志物包括基于办公室的、基于实验室的、基于图像的表型以及药物使用情况。用于冠状动脉风险预测的替代颈动脉扫描已显示出有前景的结果。为基于AI的训练选择真实数据(GT)以及进行科学和临床验证对于CVD分层以避免RoB非常重要。据观察,最流行的分类范式是多类,其次是集成和多标签。深度学习技术在CVD风险分层中的应用尚处于非常早期的发展阶段。基于移动和云的AI技术更有可能成为未来的发展方向。基于AI的CVD风险评估方法最具前景且最为成功。在基于AI的模型中,GT的选择对于防止RoB最为关键。在非云框架和基于云的框架中使用三种CVD范式时,将基于图像的策略与传统风险因素相结合可提供最高的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfa/8947682/cc51d93add3e/diagnostics-12-00722-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验