Suppr超能文献

脂质纳米域的动态无标记成像

Dynamic label-free imaging of lipid nanodomains.

作者信息

de Wit Gabrielle, Danial John S H, Kukura Philipp, Wallace Mark I

机构信息

Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom.

Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom

出版信息

Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12299-303. doi: 10.1073/pnas.1508483112. Epub 2015 Sep 23.

Abstract

Lipid rafts are submicron proteolipid domains thought to be responsible for membrane trafficking and signaling. Their small size and transient nature put an understanding of their dynamics beyond the reach of existing techniques, leading to much contention as to their exact role. Here, we exploit the differences in light scattering from lipid bilayer phases to achieve dynamic imaging of nanoscopic lipid domains without any labels. Using phase-separated droplet interface bilayers we resolve the diffusion of domains as small as 50 nm in radius and observe nanodomain formation, destruction, and dynamic coalescence with a domain lifetime of 220±60 ms. Domain dynamics on this timescale suggests an important role in modulating membrane protein function.

摘要

脂筏是亚微米级的蛋白脂质结构域,被认为与膜运输和信号传导有关。其尺寸小且具有瞬时性,使得现有技术难以理解其动态变化,这导致了关于它们确切作用的诸多争议。在此,我们利用脂质双分子层相之间光散射的差异,在无需任何标记的情况下实现对纳米级脂质结构域的动态成像。使用相分离的液滴界面双分子层,我们解析了半径小至50纳米的结构域的扩散,并观察到纳米结构域的形成、破坏以及动态融合,其结构域寿命为220±60毫秒。这个时间尺度上的结构域动态变化表明其在调节膜蛋白功能方面具有重要作用。

相似文献

1
Dynamic label-free imaging of lipid nanodomains.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12299-303. doi: 10.1073/pnas.1508483112. Epub 2015 Sep 23.
3
Membrane Lipid Nanodomains.
Chem Rev. 2018 Dec 12;118(23):11259-11297. doi: 10.1021/acs.chemrev.8b00322. Epub 2018 Oct 26.
4
Nanoscale analysis of supported lipid bilayers using atomic force microscopy.
Biochim Biophys Acta. 2010 Apr;1798(4):750-65. doi: 10.1016/j.bbamem.2009.07.026. Epub 2009 Aug 6.
5
Transition from nanodomains to microdomains induced by exposure of lipid monolayers to air.
Biophys J. 2007 Apr 15;92(8):2842-53. doi: 10.1529/biophysj.106.088419. Epub 2007 Jan 19.
6
Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy.
ACS Nano. 2013 Dec 23;7(12):10662-70. doi: 10.1021/nn403367c. Epub 2013 Nov 27.
7
Investigation of Nanoscopic Phase Separations in Lipid Membranes Using Inverse FCS.
Biophys J. 2017 Jun 6;112(11):2367-2376. doi: 10.1016/j.bpj.2017.04.013.
8
Transient Nanoscopic Phase Separation in Biological Lipid Membranes Resolved by Planar Plasmonic Antennas.
ACS Nano. 2017 Jul 25;11(7):7241-7250. doi: 10.1021/acsnano.7b03177. Epub 2017 Jul 14.
9
On the small size of liquid-disordered + liquid-ordered nanodomains.
Biochim Biophys Acta Biomembr. 2021 Oct 1;1863(10):183685. doi: 10.1016/j.bbamem.2021.183685. Epub 2021 Jun 25.
10
Nanoscale imaging of domains in supported lipid membranes.
Langmuir. 2007 May 22;23(11):5886-95. doi: 10.1021/la070108t. Epub 2007 Apr 12.

引用本文的文献

1
Real-time label-free imaging of living crystallization-driven self-assembly.
Nat Commun. 2025 Mar 18;16(1):2672. doi: 10.1038/s41467-025-57776-9.
4
Measuring the Transmembrane Registration of Lipid Domains in Droplet Interface Bilayers through Tensiometry.
Langmuir. 2024 May 28;40(21):11228-11238. doi: 10.1021/acs.langmuir.4c00958. Epub 2024 May 16.
5
Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform.
Nat Commun. 2024 May 15;15(1):4109. doi: 10.1038/s41467-024-48132-4.
7
Heterogeneous biological membranes regulate protein partitioning via fluctuating diffusivity.
PNAS Nexus. 2023 Aug 3;2(8):pgad258. doi: 10.1093/pnasnexus/pgad258. eCollection 2023 Aug.
8
Eukaryotic Cell Membranes: Structure, Composition, Research Methods and Computational Modelling.
Int J Mol Sci. 2023 Jul 7;24(13):11226. doi: 10.3390/ijms241311226.
10
Multiplexed Protein Detection and Parallel Binding Kinetics Analysis with Label-Free Digital Single-Molecule Counting.
Anal Chem. 2023 Jan 17;95(2):1541-1548. doi: 10.1021/acs.analchem.2c04582. Epub 2023 Jan 3.

本文引用的文献

2
Membrane microdomains: from seeing to understanding.
Front Plant Sci. 2014 Feb 18;5:18. doi: 10.3389/fpls.2014.00018. eCollection 2014.
3
Label-free, all-optical detection, imaging, and tracking of a single protein.
Nano Lett. 2014;14(4):2065-70. doi: 10.1021/nl500234t. Epub 2014 Mar 21.
4
Constructing droplet interface bilayers from the contact of aqueous droplets in oil.
Nat Protoc. 2013 Jun;8(6):1048-57. doi: 10.1038/nprot.2013.061. Epub 2013 May 2.
5
Bilayer thickness mismatch controls domain size in model membranes.
J Am Chem Soc. 2013 May 8;135(18):6853-9. doi: 10.1021/ja3113615. Epub 2013 Feb 22.
6
A critical survey of methods to detect plasma membrane rafts.
Philos Trans R Soc Lond B Biol Sci. 2012 Dec 24;368(1611):20120033. doi: 10.1098/rstb.2012.0033. Print 2013 Feb 5.
7
The sensing of membrane microdomains based on pore-forming toxins.
Curr Med Chem. 2013;20(4):491-501. doi: 10.2174/0929867311320040002.
8
Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy.
Phys Chem Chem Phys. 2012 Dec 5;14(45):15625-36. doi: 10.1039/c2cp41013c. Epub 2012 Sep 20.
9
Transient GPI-anchored protein homodimers are units for raft organization and function.
Nat Chem Biol. 2012 Sep;8(9):774-83. doi: 10.1038/nchembio.1028. Epub 2012 Jul 22.
10
Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.
Biochim Biophys Acta. 2012 Jul;1818(7):1777-84. doi: 10.1016/j.bbamem.2012.03.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验