Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona85287, United States.
School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona85287, United States.
Anal Chem. 2023 Jan 17;95(2):1541-1548. doi: 10.1021/acs.analchem.2c04582. Epub 2023 Jan 3.
Multiplexed protein detection is critical for improving the drug and biomarker screening efficiency. Here, we show that multiplexed protein detection and parallel protein interaction analysis can be realized by evanescent scattering microscopy (ESM). ESM enables binding kinetics measurement with label-free digital single-molecule counting. We implemented an automatic single-molecule counting strategy with high temporal resolution to precisely determine the binding time, which improves the counting efficiency and accuracy. We show that digital single-molecule counting can recognize proteins with different molecular weights, thus making it possible to monitor the protein binding processes in the solution by real-time tracking of the numbers of free and bound proteins landing on the sensor surface. Furthermore, we show that this strategy can simultaneously analyze the kinetics of two different protein interaction processes on the surface and in the solution. This work may pave a way to investigate complicated protein interactions, such as the competition of biomarker-antibody binding in biofluids with biomarker-protein binding on the cellular membrane.
多重蛋白质检测对于提高药物和生物标志物筛选效率至关重要。在这里,我们展示了利用消逝场散射显微镜(ESM)可以实现多重蛋白质检测和并行蛋白质相互作用分析。ESM 能够进行无标记数字单分子计数的结合动力学测量。我们实现了具有高时间分辨率的自动单分子计数策略,以精确确定结合时间,从而提高了计数效率和准确性。我们表明,数字单分子计数可以识别不同分子量的蛋白质,从而可以通过实时跟踪自由和结合蛋白质在传感器表面上的数量来监测溶液中的蛋白质结合过程。此外,我们表明该策略可以同时分析表面和溶液中两种不同蛋白质相互作用过程的动力学。这项工作可能为研究复杂的蛋白质相互作用铺平道路,例如生物流体中的生物标志物-抗体与细胞膜上的生物标志物-蛋白质结合的竞争。