Suppr超能文献

疟原虫阳离子ATP酶PfATP4及其在新型抗疟药物作用机制中的作用。

The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs.

作者信息

Spillman Natalie Jane, Kirk Kiaran

机构信息

Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia ; Department of Medicine (Infectious Diseases), Washington University School of Medicine, Saint Louis, MO 63110, USA.

Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.

出版信息

Int J Parasitol Drugs Drug Resist. 2015 Aug 27;5(3):149-62. doi: 10.1016/j.ijpddr.2015.07.001. eCollection 2015 Dec.

Abstract

The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na(+) concentration and the plasma membrane P-type cation translocating ATPase 'PfATP4' has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's 'Malaria Box'. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na(+). Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field.

摘要

红细胞内疟原虫恶性疟原虫维持着较低的胞质钠离子浓度,而质膜P型阳离子转运ATP酶“PfATP4”被认为在这一过程中起关键作用。近年来,PfATP4受到了广泛关注,因为该蛋白的突变会使疟原虫对越来越多的新型抗疟化合物产生抗性,这些化合物包括螺吲哚酮类、吡唑类、二氢异喹啉酮类以及疟疾药物研发公司“疟疾药物盒”中的许多抗疟药物。当疟原虫接触这些化合物时,胞质钠离子会迅速紊乱。这些化学性质不同的化合物是否以及如何与PfATP4相互作用,以及这种相互作用如何导致疟原虫死亡,目前尚不清楚。多种不同化学类别的化合物都作用于PfATP4,这一事实凸显了其作为新一代抗疟药物潜在靶点的重要性。一种螺吲哚酮(KAE609,现称为cipargamin)已完成I期和IIa期临床试验,结果良好。在本综述中,我们探讨了PfATP4的生理作用,总结了目前已知PfATP4参与其作用机制的抗疟化合物种类,并展望了从实验室靶点鉴定到临床患者治疗的转化前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8de/4559606/f6edd856128a/fx1.jpg

相似文献

1
The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs.
Int J Parasitol Drugs Drug Resist. 2015 Aug 27;5(3):149-62. doi: 10.1016/j.ijpddr.2015.07.001. eCollection 2015 Dec.
2
Biochemical characterization and chemical inhibition of PfATP4-associated Na-ATPase activity in membranes.
J Biol Chem. 2018 Aug 24;293(34):13327-13337. doi: 10.1074/jbc.RA118.003640. Epub 2018 Jul 9.
3
Antimalarials Targeting the Malaria Parasite Cation ATPase ATP4 (PfATP4).
Curr Top Med Chem. 2023;23(3):214-226. doi: 10.2174/1568026623666221121154354.
4
Cell Swelling Induced by the Antimalarial KAE609 (Cipargamin) and Other PfATP4-Associated Antimalarials.
Antimicrob Agents Chemother. 2018 May 25;62(6). doi: 10.1128/AAC.00087-18. Print 2018 Jun.
5
Spiroindolone NITD609 is a novel antimalarial drug that targets the P-type ATPase PfATP4.
Future Med Chem. 2016;8(2):227-38. doi: 10.4155/fmc.15.177. Epub 2016 Jan 29.
9
Diverse chemotypes disrupt ion homeostasis in the Malaria parasite.
Mol Microbiol. 2014 Oct;94(2):327-39. doi: 10.1111/mmi.12765. Epub 2014 Sep 15.

引用本文的文献

2
Optimization and Characterization of N-Acetamide Indoles as Antimalarials That Target PfATP4.
J Med Chem. 2025 Apr 24;68(8):8933-8966. doi: 10.1021/acs.jmedchem.5c00614. Epub 2025 Apr 14.
4
Revisiting the druggable genome using predicted structures and data mining.
NPJ Drug Discov. 2025;2(1):3. doi: 10.1038/s44386-025-00006-5. Epub 2025 Mar 4.
5
Revisiting the Plasmodium falciparum druggable genome using predicted structures and data mining.
Res Sq. 2024 Nov 26:rs.3.rs-5412515. doi: 10.21203/rs.3.rs-5412515/v1.
6
To quest new targets of parasite and their potential inhibitors to combat antimalarial drug resistance.
J Parasit Dis. 2024 Dec;48(4):671-722. doi: 10.1007/s12639-024-01687-x. Epub 2024 May 31.
7
Lactam Truncation Yields a Dihydroquinazolinone Scaffold with Potent Antimalarial Activity that Targets PfATP4.
ChemMedChem. 2024 Dec 16;19(24):e202400549. doi: 10.1002/cmdc.202400549. Epub 2024 Oct 29.
8
Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4.
J Med Chem. 2024 Aug 22;67(16):14493-14523. doi: 10.1021/acs.jmedchem.4c01241. Epub 2024 Aug 12.
9
Generation of a mutator parasite to drive resistome discovery in Plasmodium falciparum.
Nat Commun. 2023 May 27;14(1):3059. doi: 10.1038/s41467-023-38774-1.
10
Synthesis and characterisation of new antimalarial fluorinated triazolopyrazine compounds.
Beilstein J Org Chem. 2023 Jan 31;19:107-114. doi: 10.3762/bjoc.19.11. eCollection 2023.

本文引用的文献

1
A Basis for Rapid Clearance of Circulating Ring-Stage Malaria Parasites by the Spiroindolone KAE609.
J Infect Dis. 2016 Jan 1;213(1):100-4. doi: 10.1093/infdis/jiv358. Epub 2015 Jul 1.
4
Pharmacokinetic-pharmacodynamic analysis of spiroindolone analogs and KAE609 in a murine malaria model.
Antimicrob Agents Chemother. 2015 Feb;59(2):1200-10. doi: 10.1128/AAC.03274-14. Epub 2014 Dec 8.
5
(+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5455-62. doi: 10.1073/pnas.1414221111. Epub 2014 Dec 1.
8
Diverse chemotypes disrupt ion homeostasis in the Malaria parasite.
Mol Microbiol. 2014 Oct;94(2):327-39. doi: 10.1111/mmi.12765. Epub 2014 Sep 15.
9
Defining the biology component of the drug discovery strategy for malaria eradication.
Trends Parasitol. 2014 Oct;30(10):478-90. doi: 10.1016/j.pt.2014.07.004. Epub 2014 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验