Jiménez-Díaz María Belén, Ebert Daniel, Salinas Yandira, Pradhan Anupam, Lehane Adele M, Myrand-Lapierre Marie-Eve, O'Loughlin Kathleen G, Shackleford David M, Justino de Almeida Mariana, Carrillo Angela K, Clark Julie A, Dennis Adelaide S M, Diep Jonathon, Deng Xiaoyan, Duffy Sandra, Endsley Aaron N, Fedewa Greg, Guiguemde W Armand, Gómez María G, Holbrook Gloria, Horst Jeremy, Kim Charles C, Liu Jian, Lee Marcus C S, Matheny Amy, Martínez María Santos, Miller Gregory, Rodríguez-Alejandre Ane, Sanz Laura, Sigal Martina, Spillman Natalie J, Stein Philip D, Wang Zheng, Zhu Fangyi, Waterson David, Knapp Spencer, Shelat Anang, Avery Vicky M, Fidock David A, Gamo Francisco-Javier, Charman Susan A, Mirsalis Jon C, Ma Hongshen, Ferrer Santiago, Kirk Kiaran, Angulo-Barturen Iñigo, Kyle Dennis E, DeRisi Joseph L, Floyd David M, Guy R Kiplin
Tres Cantos Medicines Development Campus-Diseases of the Developing World, GlaxoSmithKline, Tres Cantos 28760, Madrid, Spain;
Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2330;
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5455-62. doi: 10.1073/pnas.1414221111. Epub 2014 Dec 1.
Drug discovery for malaria has been transformed in the last 5 years by the discovery of many new lead compounds identified by phenotypic screening. The process of developing these compounds as drug leads and studying the cellular responses they induce is revealing new targets that regulate key processes in the Plasmodium parasites that cause malaria. We disclose herein that the clinical candidate (+)-SJ733 acts upon one of these targets, ATP4. ATP4 is thought to be a cation-transporting ATPase responsible for maintaining low intracellular Na(+) levels in the parasite. Treatment of parasitized erythrocytes with (+)-SJ733 in vitro caused a rapid perturbation of Na(+) homeostasis in the parasite. This perturbation was followed by profound physical changes in the infected cells, including increased membrane rigidity and externalization of phosphatidylserine, consistent with eryptosis (erythrocyte suicide) or senescence. These changes are proposed to underpin the rapid (+)-SJ733-induced clearance of parasites seen in vivo. Plasmodium falciparum ATPase 4 (pfatp4) mutations that confer resistance to (+)-SJ733 carry a high fitness cost. The speed with which (+)-SJ733 kills parasites and the high fitness cost associated with resistance-conferring mutations appear to slow and suppress the selection of highly drug-resistant mutants in vivo. Together, our data suggest that inhibitors of PfATP4 have highly attractive features for fast-acting antimalarials to be used in the global eradication campaign.
在过去5年中,通过表型筛选发现了许多新的先导化合物,疟疾药物研发发生了变革。将这些化合物开发成药物先导并研究它们诱导的细胞反应的过程,正在揭示调控导致疟疾的疟原虫关键过程的新靶点。我们在此披露,临床候选药物(+)-SJ733作用于这些靶点之一,即ATP4。ATP4被认为是一种阳离子转运ATP酶,负责维持寄生虫细胞内低钠水平。体外用(+)-SJ733处理被寄生的红细胞会导致寄生虫体内钠稳态迅速紊乱。这种紊乱之后,受感染细胞会发生深刻的物理变化,包括膜硬度增加和磷脂酰丝氨酸外化,这与红细胞凋亡(红细胞自杀)或衰老一致。这些变化被认为是体内(+)-SJ733诱导寄生虫快速清除的基础。对(+)-SJ733产生抗性的恶性疟原虫ATP酶4(pfatp4)突变具有很高的适合度代价。(+)-SJ733杀死寄生虫的速度以及与赋予抗性的突变相关的高适合度代价,似乎会减缓并抑制体内高耐药性突变体的选择。总之,我们的数据表明,PfATP4抑制剂对于在全球根除运动中使用的速效抗疟药物具有极具吸引力的特性。