Godinez-Macias Karla P, Chen Daisy, Wallis J Lincoln, Siegel Miles G, Adam Anna, Bopp Selina, Carolino Krypton, Coulson Lauren B, Durst Greg, Thathy Vandana, Esherick Lisl, Farringer Madeline A, Flannery Erika L, Forte Barbara, Liu Tiqing, Magalhaes Luma Godoy, Gupta Anil K, Istvan Eva S, Jiang Tiantian, Kumpornsin Krittikorn, Lobb Karen, McLean Kyle, Moura Igor M R, Okombo John, Payne N Connor, Plater Andrew, Rao Srinivasa P S, Siqueira-Neto Jair L, Somsen Bente A, Summers Robert L, Zhang Rumin, Gilson Michael K, Gamo Francisco-Javier, Campo Brice, Baragaña Beatriz, Duffy James, Gilbert Ian H, Lukens Amanda K, Dechering Koen J, Niles Jacquin C, McNamara Case W, Cheng Xiu, Birkholtz Lyn-Marie, Bronkhorst Alfred W, Fidock David A, Wirth Dyann F, Goldberg Daniel E, Lee Marcus C S, Winzeler Elizabeth A
University of California, San Diego.
Panorama Global.
Res Sq. 2024 Nov 26:rs.3.rs-5412515. doi: 10.21203/rs.3.rs-5412515/v1.
The identification of novel drug targets for the purpose of designing small molecule inhibitors is key component to modern drug discovery. In malaria parasites, discoveries of antimalarial targets have primarily occurred retroactively by investigating the mode of action of compounds found through phenotypic screens. Although this method has yielded many promising candidates, it is time- and resource-consuming and misses targets not captured by existing antimalarial compound libraries and phenotypic assay conditions. Leveraging recent advances in protein structure prediction and data mining, we systematically assessed the genome for proteins amenable to target-based drug discovery, identifying 867 candidate targets with evidence of small molecule binding and blood stage essentiality. Of these, 540 proteins showed strong essentiality evidence and lack inhibitors that have progressed to clinical trials. Expert review and rubric-based scoring of this subset based on additional criteria such as selectivity, structural information, and assay developability yielded 67 high priority candidates. This study also provides a genome-wide data resource and implements a generalizable framework for systematically evaluating and prioritizing novel pathogenic disease targets.
为设计小分子抑制剂而鉴定新型药物靶点是现代药物发现的关键组成部分。在疟原虫中,抗疟靶点的发现主要是通过研究表型筛选中发现的化合物的作用模式而追溯性地实现的。尽管这种方法已经产生了许多有前景的候选靶点,但它既耗时又耗资源,而且会遗漏现有抗疟化合物库和表型测定条件未涵盖的靶点。利用蛋白质结构预测和数据挖掘的最新进展,我们系统地评估了基因组中适合基于靶点的药物发现的蛋白质,鉴定出867个具有小分子结合证据和血液阶段必需性的候选靶点。其中,540种蛋白质显示出强有力的必需性证据,且缺乏已进入临床试验阶段的抑制剂。基于选择性、结构信息和测定可开发性等附加标准,对该子集进行专家评审和基于评分标准的评分,产生了67个高优先级候选靶点。本研究还提供了全基因组数据资源,并实施了一个可推广的框架,用于系统地评估新型致病疾病靶点并对其进行优先级排序。