Cheng Ke, Chen Qingfang, Yang Xibei, Gao Shang, Yu Hualong
School of Computer Science and Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212003, China.
School of Electronic Information, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212003, China.
Biomed Mater Eng. 2015;26 Suppl 1:S1855-62. doi: 10.3233/BME-151488.
To address the imbalanced classification problem emerging in Bioinformatics, a boundary movement-based extreme learning machine (ELM) algorithm called BM-ELM was proposed. BM-ELM tries to firstly explore the prior information about data distribution by condensing all training instances into the one-dimensional feature space corresponding to the original output in ELM, and then on the transformed space, to find the optimal moving distance of the classification hyperplane by estimating the probability density distributions of the instances in different classes. Experimental results on four real imbalanced bioinformatics classification data sets indicated that the proposed BM-ELM algorithm outperforms some traditional bias correction algorithms due to it can greatly improve the sensitivity of the classification results with small loss of specificity as possible. Also, BM-ELM algorithm has presented better performance than the widely used support vector machine (SVM) classifier. The algorithm can be widely popularized in various large-scale bioinformatics applications.
为了解决生物信息学中出现的不平衡分类问题,提出了一种基于边界移动的极限学习机(ELM)算法,称为BM-ELM。BM-ELM首先尝试通过将所有训练实例压缩到与ELM中原始输出相对应的一维特征空间来探索数据分布的先验信息,然后在变换后的空间上,通过估计不同类中实例的概率密度分布来找到分类超平面的最佳移动距离。在四个真实的不平衡生物信息学分类数据集上的实验结果表明,所提出的BM-ELM算法优于一些传统的偏差校正算法,因为它可以在尽可能小的特异性损失的情况下极大地提高分类结果的敏感性。此外,BM-ELM算法的性能优于广泛使用的支持向量机(SVM)分类器。该算法可在各种大规模生物信息学应用中广泛推广。