Suppr超能文献

在线序贯类特定极端学习机用于二进制不平衡学习。

Online sequential class-specific extreme learning machine for binary imbalanced learning.

机构信息

Department of Computer Science and Engineering, Maulana Azad National Institute of Technology (MANIT), Bhopal, Madhya Pradesh, 462003, India.

出版信息

Neural Netw. 2019 Nov;119:235-248. doi: 10.1016/j.neunet.2019.08.018. Epub 2019 Aug 23.

Abstract

Many real-world applications suffer from the class imbalance problem, in which some classes have significantly fewer examples compared to the other classes. In this paper, we focus on online sequential learning methods, which are considerably more preferable to tackle the large size imbalanced classification problems effectively. For example, weighted online sequential extreme learning machine (WOS-ELM), voting based weighted online sequential extreme learning machine (VWOS-ELM) and weighted online sequential extreme learning machine with kernels (WOS-ELMK), etc. handle the imbalanced learning effectively. One of our recent works class-specific extreme learning machine (CS-ELM) uses class-specific regularization and has been shown to perform better for imbalanced learning. This work proposes a novel online sequential class-specific extreme learning machine (OSCSELM), which is a variant of CS-ELM. OSCSELM supports online learning technique in both chunk-by-chunk and one-by-one learning mode. It targets to handle the class imbalance problem for both small and larger datasets. The proposed work has less computational complexity in contrast with WOS-ELM for imbalanced learning. The proposed method is assessed by utilizing benchmark real-world imbalanced datasets. Experimental results illustrate the effectiveness of the proposed approach as it outperforms the other methods for imbalanced learning.

摘要

许多实际应用都存在类别不平衡问题,即某些类别相对于其他类别具有明显更少的样本。在本文中,我们专注于在线序贯学习方法,这些方法更适合有效地解决大规模不平衡分类问题。例如,加权在线序贯极端学习机(WOS-ELM)、基于投票的加权在线序贯极端学习机(VWOS-ELM)和带核的加权在线序贯极端学习机(WOS-ELMK)等,有效地处理不平衡学习。我们最近的一项工作——特定类别的极端学习机(CS-ELM)——使用特定类别的正则化,已被证明在不平衡学习中表现更好。这项工作提出了一种新的在线序贯特定类别的极端学习机(OSCSELM),它是 CS-ELM 的一种变体。OSCSELM 支持在块逐块和逐个学习模式下的在线学习技术。它旨在处理小数据集和大数据集的类别不平衡问题。与不平衡学习中的 WOS-ELM 相比,所提出的方法具有更低的计算复杂度。所提出的方法通过利用基准真实世界不平衡数据集进行评估。实验结果表明,该方法在不平衡学习中表现优于其他方法,具有有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验