College of Information Engineering, China Jiliang University, Hangzhou 310018, China.
College of Informatics, Zhejiang Sci-Tech University, Hangzhou 310014, China.
Comput Intell Neurosci. 2016;2016:8056253. doi: 10.1155/2016/8056253. Epub 2016 Aug 23.
Embedding cost-sensitive factors into the classifiers increases the classification stability and reduces the classification costs for classifying high-scale, redundant, and imbalanced datasets, such as the gene expression data. In this study, we extend our previous work, that is, Dissimilar ELM (D-ELM), by introducing misclassification costs into the classifier. We name the proposed algorithm as the cost-sensitive D-ELM (CS-D-ELM). Furthermore, we embed rejection cost into the CS-D-ELM to increase the classification stability of the proposed algorithm. Experimental results show that the rejection cost embedded CS-D-ELM algorithm effectively reduces the average and overall cost of the classification process, while the classification accuracy still remains competitive. The proposed method can be extended to classification problems of other redundant and imbalanced data.
将成本敏感因素嵌入分类器中可以提高分类的稳定性,并降低对大规模、冗余和不平衡数据集(如基因表达数据)进行分类的成本。在这项研究中,我们扩展了我们之前的工作,即不相似极限学习机(D-ELM),通过在分类器中引入误分类成本。我们将提出的算法命名为成本敏感 D-ELM(CS-D-ELM)。此外,我们将拒绝成本嵌入到 CS-D-ELM 中,以提高所提出算法的分类稳定性。实验结果表明,嵌入拒绝成本的 CS-D-ELM 算法有效地降低了分类过程的平均和总体成本,同时保持了有竞争力的分类精度。所提出的方法可以扩展到其他冗余和不平衡数据的分类问题。