Suppr超能文献

使用在线序列极限学习机估计血细胞比容。

Hematocrit estimation using online sequential extreme learning machine.

作者信息

Huynh Hieu Trung, Won Yonggwan, Kim Jinsul

机构信息

Faculty of Information Technology, Industrial University of Ho Chi Minh City, Viet Nam.

Department of Computer Engineering, Chonnam National University, Gwangju 500-757, Korea.

出版信息

Biomed Mater Eng. 2015;26 Suppl 1:S2025-32. doi: 10.3233/BME-151507.

Abstract

Hematocrit is a blood test that is defined as the volume percentage of red blood cells in the whole blood. It is one of the important indicators for clinical decision making and the most effective factor in glucose measurement using handheld devices. In this paper, a method for hematocrit estimation that is based upon the transduced current curve and the neural network is presented. The salient points of this method are that (1) the neural network is trained by the online sequential extreme learning machine (OS-ELM) in which the devices can be still trained with new samples during the using process and (2) the extended features are used to reduce the number of current points which can save the battery power of devices and speed up the measurement process.

摘要

血细胞比容是一种血液检测,定义为全血中红细胞的体积百分比。它是临床决策的重要指标之一,也是使用手持设备进行葡萄糖测量时最有效的因素。本文提出了一种基于转导电流曲线和神经网络的血细胞比容估计方法。该方法的显著特点是:(1)神经网络由在线序列极限学习机(OS-ELM)训练,在使用过程中设备仍可使用新样本进行训练;(2)使用扩展特征来减少电流点数,这可以节省设备的电池电量并加快测量过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验