文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用三维快速行进算法和单隐藏层前馈神经网络从磁共振图像中进行肝脏肿瘤分割

Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network.

作者信息

Le Trong-Ngoc, Bao Pham The, Huynh Hieu Trung

机构信息

Faculty of Information Technology, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap District, Ho Chi Minh City, Vietnam; Faculty of Information Technology, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Vietnam.

Faculty of Mathematics and Computer Science, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Vietnam.

出版信息

Biomed Res Int. 2016;2016:3219068. doi: 10.1155/2016/3219068. Epub 2016 Aug 14.


DOI:10.1155/2016/3219068
PMID:27597960
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5002342/
Abstract

Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the "ground truth." Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively.

摘要

目的。我们的目标是开发一种用于磁共振图像中肝脏肿瘤分割的计算机化方案。材料与方法。我们提出的方案包括四个主要阶段。首先,通过使用种子点提取T1加权磁共振图像系列中包含肝脏肿瘤区域的感兴趣区域(ROI)图像。对该ROI图像中的噪声进行了降低,并增强了边界。应用三维快速行进算法生成被视为教师区域的初始标记区域。使用通过非迭代算法训练的单隐藏层前馈神经网络(SLFN)对未标记的体素进行分类。最后,应用后处理阶段来提取和细化肝脏肿瘤边界。将我们的方案确定的肝脏肿瘤与放射科医生手动描绘的肿瘤进行比较,后者用作“真实情况”。结果。该研究在来自16名患者的25个肿瘤的两个数据集上进行了评估。所提出的方案获得的平均体积重叠误差为27.43%,平均体积百分比误差为15.73%。平均表面距离、均方根表面距离和最大表面距离的平均值分别为0.58毫米、1.20毫米和6.29毫米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92f7/5002342/86959650caed/BMRI2016-3219068.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92f7/5002342/f1d5a7a13326/BMRI2016-3219068.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92f7/5002342/86959650caed/BMRI2016-3219068.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92f7/5002342/f1d5a7a13326/BMRI2016-3219068.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92f7/5002342/86959650caed/BMRI2016-3219068.002.jpg

相似文献

[1]
Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network.

Biomed Res Int. 2016

[2]
Fully automatic scheme for measuring liver volume in 3D MR images.

Biomed Mater Eng. 2015

[3]
Semiautomatic segmentation of liver metastases on volumetric CT images.

Med Phys. 2015-11

[4]
Computerized liver volumetry on MRI by using 3D geodesic active contour segmentation.

AJR Am J Roentgenol. 2014-1

[5]
Malignant lesion segmentation in contrast-enhanced breast MR images based on the marker-controlled watershed.

Med Phys. 2009-10

[6]
An algorithm for PET tumor volume and activity quantification: without specifying camera's point spread function (PSF).

Med Phys. 2012-7

[7]
Semiautomatic 3-D prostate segmentation from TRUS images using spherical harmonics.

IEEE Trans Med Imaging. 2006-12

[8]
Bayesian segmentation of human facial tissue using 3D MR-CT information fusion, resolution enhancement and partial volume modelling.

Comput Methods Programs Biomed. 2016-2

[9]
Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains.

Med Image Anal. 2008-12

[10]
MRA image segmentation with capillary active contour.

Med Image Comput Comput Assist Interv. 2005

引用本文的文献

[1]
Artificial intelligence techniques in liver cancer.

Front Oncol. 2024-9-3

[2]
Deep Learning Combined with Radiologist's Intervention Achieves Accurate Segmentation of Hepatocellular Carcinoma in Dual-Phase Magnetic Resonance Images.

Biomed Res Int. 2024-2-28

[3]
Revisiting artificial intelligence diagnosis of hepatocellular carcinoma with DIKWH framework.

Front Genet. 2023-3-7

[4]
Automatic Liver Segmentation Using EfficientNet and Attention-Based Residual U-Net in CT.

J Digit Imaging. 2022-12

[5]
A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis.

Arch Comput Methods Eng. 2022

[6]
Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI.

Eur Radiol. 2019-1-28

[7]
3D Liver Tumor Segmentation in CT Images Using Improved Fuzzy -Means and Graph Cuts.

Biomed Res Int. 2017-9-26

本文引用的文献

[1]
Hematocrit estimation using online sequential extreme learning machine.

Biomed Mater Eng. 2015

[2]
Liver tumor detection and segmentation using kernel-based Extreme Learning Machine.

Annu Int Conf IEEE Eng Med Biol Soc. 2013

[3]
Performance comparison of SLFN training algorithms for DNA microarray classification.

Adv Exp Med Biol. 2011

[4]
Liver tumors segmentation from CTA images using voxels classification and affinity constraint propagation.

Int J Comput Assist Radiol Surg. 2010-6-24

[5]
Semi-automatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification.

Med Image Anal. 2009-9-19

[6]
An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks.

Int J Neural Syst. 2008-10

[7]
A bayesian approach for liver analysis: algorithm and validation study.

Med Image Comput Comput Assist Interv. 2008

[8]
A fast and accurate online sequential learning algorithm for feedforward networks.

IEEE Trans Neural Netw. 2006-11

[9]
Sometimes size doesn't matter: reevaluating RECIST and tumor response rate endpoints.

J Natl Cancer Inst. 2006-9-20

[10]
How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT?

Acad Radiol. 2005-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索