Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany; Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Altensteinstraße 6, 14195 Berlin, Germany; School of Geography, Queen Mary University of London, Mile End Road, London E1 4N, UK.
School of Geography, Queen Mary University of London, Mile End Road, London E1 4N, UK.
Sci Total Environ. 2016 Jan 15;541:268-281. doi: 10.1016/j.scitotenv.2015.09.045. Epub 2015 Sep 25.
Metal pollution is a global problem in estuaries due to the legacy of historic contamination and currently increasing metal emissions. However, the establishment of water and sediment standards or management actions in brackish systems has been difficult because of the inherent transdisciplinary nature of estuarine processes. According to the European Commission, integrative comprehension of fate and effects of contaminants in different compartments of these transitional environments (estuarine sediment, water, biota) is still required to better establish, assess and monitor the good ecological status targeted by the Water Framework Directive. Thus, the present study proposes a holistic overview and conceptual model for the environmental fate of metals and their toxicity effects on aquatic organisms in estuaries. This includes the analysis and integration of biogeochemical processes and parameters, metal chemistry and organism physiology. Sources of particulate and dissolved metal, hydrodynamics, water chemistry, and mechanisms of toxicity are discussed jointly in a multidisciplinary manner. It is also hypothesized how these different drivers of metal behaviour might interact and affect metal concentrations in diverse media, and the knowledge gaps and remaining research challenges are pointed. Ultimately,estuarine physicochemical gradients, biogeochemical processes, and organism physiology are jointly coordinating the fate and potential effects of metals in estuaries, and both realistic model approaches and attempts.
金属污染是河口的一个全球性问题,这是由于历史污染的遗留问题和当前不断增加的金属排放。然而,由于河口过程固有的跨学科性质,在咸淡水系统中建立水和沉积物标准或管理措施一直很困难。根据欧盟委员会的说法,为了更好地建立、评估和监测《水框架指令》所针对的良好生态状况,仍然需要综合了解这些过渡性环境(河口沉积物、水、生物群)不同部分中污染物的归宿和影响。因此,本研究提出了一个综合的概述和概念模型,用于研究金属在河口的环境归宿及其对水生生物的毒性效应。这包括分析和整合生物地球化学过程和参数、金属化学和生物体生理学。以多学科的方式共同讨论了颗粒态和溶解态金属的来源、水动力、水化学以及毒性机制。还假设了这些不同的金属行为驱动因素可能如何相互作用并影响不同介质中的金属浓度,以及指出了知识差距和剩余的研究挑战。最终,河口的物理化学梯度、生物地球化学过程和生物体生理学共同协调了金属在河口的归宿和潜在影响,同时还提出了现实的模型方法和尝试。