Suppr超能文献

在存在竞争性金属蛋白的情况下研究金属酶抑制剂的选择性。

Investigating the Selectivity of Metalloenzyme Inhibitors in the Presence of Competing Metalloproteins.

作者信息

Chen Yao, Cohen Seth M

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093 (USA).

出版信息

ChemMedChem. 2015 Oct;10(10):1733-8. doi: 10.1002/cmdc.201500293. Epub 2015 Aug 25.

Abstract

Metalloprotein inhibitors (MPi) are an important class of therapeutics for the treatment of a variety of diseases, including hypertension, cancer, and HIV/AIDS. However, despite their clinical success, there is an apprehension that MPi may be less selective than other small-molecule therapeutics and more prone to inhibit off-target metalloenzymes. We examined the issue of MPi specificity by investigating the selectivity of a variety of MPi against a representative panel of metalloenzymes in the presence of competing metalloproteins (metallothionein, myoglobin, carbonic anhydrase, and transferrin). Our findings reveal that a wide variety of MPi do not exhibit a decrease in inhibitory activity in the presence of large excesses of competing metalloproteins, suggesting that the competing proteins do not titrate the MPi away from its intended target. This study represents a rudimentary but important means to mimic the biological milieu, which contains other metalloproteins that could compete the MPi away from its target. The strategy used in this study may be a useful approach to examine the selectivity of other MPi in development.

摘要

金属蛋白酶抑制剂(MPi)是用于治疗多种疾病的一类重要治疗药物,包括高血压、癌症和艾滋病毒/艾滋病。然而,尽管它们在临床上取得了成功,但人们担心MPi的选择性可能不如其他小分子治疗药物,并且更易于抑制非靶标金属酶。我们通过研究多种MPi在存在竞争性金属蛋白(金属硫蛋白、肌红蛋白、碳酸酐酶和转铁蛋白)的情况下对一组代表性金属酶的选择性,来研究MPi的特异性问题。我们的研究结果表明,在存在大量过量的竞争性金属蛋白时,多种MPi的抑制活性并未降低,这表明竞争性蛋白不会将MPi从其预期靶点上滴定掉。这项研究代表了一种模拟生物环境的基本但重要的方法,生物环境中含有其他可能将MPi从其靶点上竞争掉的金属蛋白。本研究中使用的策略可能是一种用于研究其他正在开发的MPi选择性的有用方法。

相似文献

1
Investigating the Selectivity of Metalloenzyme Inhibitors in the Presence of Competing Metalloproteins.
ChemMedChem. 2015 Oct;10(10):1733-8. doi: 10.1002/cmdc.201500293. Epub 2015 Aug 25.
2
Investigating the selectivity of metalloenzyme inhibitors.
J Med Chem. 2013 Oct 24;56(20):7997-8007. doi: 10.1021/jm401053m. Epub 2013 Oct 14.
3
Metalloprotein Inhibitors for the Treatment of Human Diseases.
Curr Top Med Chem. 2016;16(4):384-96. doi: 10.2174/1568026615666150813145218.
4
The effect of metalloprotein inhibitors on cellular metal ion content and distribution.
Metallomics. 2017 Mar 22;9(3):250-257. doi: 10.1039/c6mt00267f.
5
Machine Learning Approaches for Metalloproteins.
Molecules. 2022 Feb 14;27(4):1277. doi: 10.3390/molecules27041277.
6
Isosteres of hydroxypyridinethione as drug-like pharmacophores for metalloenzyme inhibition.
J Biol Inorg Chem. 2018 Oct;23(7):1129-1138. doi: 10.1007/s00775-018-1593-1. Epub 2018 Jul 12.
7
Targeting Metalloenzymes for Therapeutic Intervention.
Chem Rev. 2019 Jan 23;119(2):1323-1455. doi: 10.1021/acs.chemrev.8b00201. Epub 2018 Sep 7.
8
A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes.
Acc Chem Res. 2017 Aug 15;50(8):2007-2016. doi: 10.1021/acs.accounts.7b00242. Epub 2017 Jul 17.
10
Targeting Metalloenzymes by Boron-Containing Metal-Binding Pharmacophores.
J Med Chem. 2021 Dec 23;64(24):17706-17727. doi: 10.1021/acs.jmedchem.1c01691. Epub 2021 Dec 7.

引用本文的文献

1
Control of metalloenzyme activity using photopharmacophores.
Coord Chem Rev. 2024 Jan 15;499. doi: 10.1016/j.ccr.2023.215485. Epub 2023 Oct 31.
2
Structure-Activity Relationships in Metal-Binding Pharmacophores for Influenza Endonuclease.
J Med Chem. 2018 Nov 21;61(22):10206-10217. doi: 10.1021/acs.jmedchem.8b01363. Epub 2018 Oct 31.
3
Isosteres of hydroxypyridinethione as drug-like pharmacophores for metalloenzyme inhibition.
J Biol Inorg Chem. 2018 Oct;23(7):1129-1138. doi: 10.1007/s00775-018-1593-1. Epub 2018 Jul 12.
4
Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1.
J Med Chem. 2017 Sep 14;60(17):7267-7283. doi: 10.1021/acs.jmedchem.7b00407. Epub 2017 Aug 30.
5
A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes.
Acc Chem Res. 2017 Aug 15;50(8):2007-2016. doi: 10.1021/acs.accounts.7b00242. Epub 2017 Jul 17.
6
The effect of metalloprotein inhibitors on cellular metal ion content and distribution.
Metallomics. 2017 Mar 22;9(3):250-257. doi: 10.1039/c6mt00267f.

本文引用的文献

1
Discovery of HDAC Inhibitors That Lack an Active Site Zn(2+)-Binding Functional Group.
ACS Med Chem Lett. 2012 Apr 26;3(6):505-8. doi: 10.1021/ml300081u. eCollection 2012 Jun 14.
2
Investigating the selectivity of metalloenzyme inhibitors.
J Med Chem. 2013 Oct 24;56(20):7997-8007. doi: 10.1021/jm401053m. Epub 2013 Oct 14.
3
Missing the target: matrix metalloproteinase antitargets in inflammation and cancer.
Trends Pharmacol Sci. 2013 Apr;34(4):233-42. doi: 10.1016/j.tips.2013.02.004. Epub 2013 Mar 26.
4
The role of metallothionein in oxidative stress.
Int J Mol Sci. 2013 Mar 15;14(3):6044-66. doi: 10.3390/ijms14036044.
5
Nucleophile recognition as an alternative inhibition mode for benzoic acid based carbonic anhydrase inhibitors.
Chem Commun (Camb). 2012 May 28;48(43):5259-61. doi: 10.1039/c2cc32013d. Epub 2012 Apr 24.
6
The intracellular trafficking pathway of transferrin.
Biochim Biophys Acta. 2012 Mar;1820(3):264-81. doi: 10.1016/j.bbagen.2011.09.009. Epub 2011 Sep 22.
7
A review of metallothionein isoforms and their role in pathophysiology.
World J Surg Oncol. 2011 May 20;9:54. doi: 10.1186/1477-7819-9-54.
8
The "magic numbers" of metallothionein.
Metallomics. 2011 May 1;3(5):444-63. doi: 10.1039/c0mt00102c. Epub 2011 Mar 15.
9
Emerging trends in metalloprotein inhibition.
Dalton Trans. 2011 Apr 14;40(14):3445-54. doi: 10.1039/c0dt01743d. Epub 2011 Feb 2.
10
A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice.
Arterioscler Thromb Vasc Biol. 2011 Mar;31(3):528-35. doi: 10.1161/ATVBAHA.110.219147. Epub 2011 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验