Suppr超能文献

金属结合药效团在流感内切酶中的结构-活性关系。

Structure-Activity Relationships in Metal-Binding Pharmacophores for Influenza Endonuclease.

机构信息

Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States.

Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States.

出版信息

J Med Chem. 2018 Nov 21;61(22):10206-10217. doi: 10.1021/acs.jmedchem.8b01363. Epub 2018 Oct 31.

Abstract

Metalloenzymes represent an important target space for drug discovery. A limitation to the early development of metalloenzyme inhibitors has been the lack of established structure-activity relationships (SARs) for molecules that bind the metal ion cofactor(s) of a metalloenzyme. Herein, we employed a bioinorganic perspective to develop an SAR for inhibition of the metalloenzyme influenza RNA polymerase PA endonuclease. The identified trends highlight the importance of the electronics of the metal-binding pharmacophore (MBP), in addition to MBP sterics, for achieving improved inhibition and selectivity. By optimization of the MBPs for PA endonuclease, a class of highly active and selective fragments was developed that displays IC values <50 nM. This SAR led to structurally distinct molecules that also displayed IC values of ∼10 nM, illustrating the utility of a metal-centric development campaign in generating highly active and selective metalloenzyme inhibitors.

摘要

金属酶是药物发现的一个重要靶标。早期金属酶抑制剂的发展受到限制,原因是缺乏与金属酶的金属离子辅因子结合的分子的明确结构-活性关系(SAR)。在此,我们采用生物无机的观点来开发流感 RNA 聚合酶 PA 内切酶的金属酶抑制剂 SAR。确定的趋势强调了金属结合药效团(MBP)的电子性质,以及 MBP 立体化学,对于实现更好的抑制和选择性的重要性。通过优化 PA 内切酶的 MBPs,开发了一类具有高活性和选择性的片段,其 IC 值<50 nM。该 SAR 导致结构不同的分子也显示出约 10 nM 的 IC 值,说明了以金属为中心的开发活动在产生高活性和选择性的金属酶抑制剂方面的实用性。

相似文献

1
Structure-Activity Relationships in Metal-Binding Pharmacophores for Influenza Endonuclease.
J Med Chem. 2018 Nov 21;61(22):10206-10217. doi: 10.1021/acs.jmedchem.8b01363. Epub 2018 Oct 31.
2
SAR Exploration of Tight-Binding Inhibitors of Influenza Virus PA Endonuclease.
J Med Chem. 2019 Nov 14;62(21):9438-9449. doi: 10.1021/acs.jmedchem.9b00747. Epub 2019 Oct 17.
5
Studies of the Interaction of Influenza Virus RNA Polymerase PA with Endonuclease Inhibitors.
Interdiscip Sci. 2018 Jun;10(2):430-437. doi: 10.1007/s12539-017-0239-2. Epub 2017 Jun 19.
6
Synthesis and SARs of dopamine derivatives as potential inhibitors of influenza virus PA endonuclease.
Eur J Med Chem. 2020 Mar 1;189:112048. doi: 10.1016/j.ejmech.2020.112048. Epub 2020 Jan 11.
7
Phenyl substituted 3-hydroxypyridin-2(1H)-ones: inhibitors of influenza A endonuclease.
Bioorg Med Chem. 2013 Nov 1;21(21):6435-46. doi: 10.1016/j.bmc.2013.08.053. Epub 2013 Sep 4.
8
Inhibitors of Influenza Virus Polymerase Acidic (PA) Endonuclease: Contemporary Developments and Perspectives.
J Med Chem. 2017 May 11;60(9):3533-3551. doi: 10.1021/acs.jmedchem.6b01227. Epub 2017 Feb 7.
9
Metal-Binding Isosteres as New Scaffolds for Metalloenzyme Inhibitors.
Inorg Chem. 2018 Aug 6;57(15):9538-9543. doi: 10.1021/acs.inorgchem.8b01632. Epub 2018 Jul 16.
10
Discovery and optimization of new 6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisoquinoline derivatives as potent influenza virus PA inhibitors.
Eur J Med Chem. 2022 Jan 5;227:113929. doi: 10.1016/j.ejmech.2021.113929. Epub 2021 Oct 19.

引用本文的文献

3
Control of metalloenzyme activity using photopharmacophores.
Coord Chem Rev. 2024 Jan 15;499. doi: 10.1016/j.ccr.2023.215485. Epub 2023 Oct 31.
4
Intermolecular Oxidopyrylium (5 + 2) Cycloaddition/Reductive Ring-Opening Strategy for the Synthesis of α-Methoxytropones.
J Org Chem. 2024 Dec 6;89(23):17813-17817. doi: 10.1021/acs.joc.4c01989. Epub 2024 Nov 12.
5
Target identification of usnic acid in bacterial and human cells.
RSC Chem Biol. 2024 May 7;5(7):617-621. doi: 10.1039/d4cb00040d. eCollection 2024 Jul 3.
7
Antiviral Compounds to Address Influenza Pandemics: An Update from 2016-2022.
Curr Med Chem. 2024;31(18):2507-2549. doi: 10.2174/0929867331666230907093501.
8
Targeting Metalloenzymes: The "Achilles' Heel" of Viruses and Parasites.
Pharmaceuticals (Basel). 2023 Jun 19;16(6):901. doi: 10.3390/ph16060901.
10
A novel compound to overcome influenza drug resistance in endonuclease inhibitors.
Mol Divers. 2024 Jun;28(3):1323-1333. doi: 10.1007/s11030-023-10659-x. Epub 2023 Jun 2.

本文引用的文献

1
Targeting Metalloenzymes for Therapeutic Intervention.
Chem Rev. 2019 Jan 23;119(2):1323-1455. doi: 10.1021/acs.chemrev.8b00201. Epub 2018 Sep 7.
2
Baloxavir: First Global Approval.
Drugs. 2018 Apr;78(6):693-697. doi: 10.1007/s40265-018-0899-1.
3
Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1.
J Med Chem. 2017 Sep 14;60(17):7267-7283. doi: 10.1021/acs.jmedchem.7b00407. Epub 2017 Aug 30.
4
A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes.
Acc Chem Res. 2017 Aug 15;50(8):2007-2016. doi: 10.1021/acs.accounts.7b00242. Epub 2017 Jul 17.
6
Effect of donor atom identity on metal-binding pharmacophore coordination.
J Biol Inorg Chem. 2017 Jun;22(4):605-613. doi: 10.1007/s00775-017-1454-3. Epub 2017 Apr 7.
7
Discovery of an Inhibitor of the Proteasome Subunit Rpn11.
J Med Chem. 2017 Feb 23;60(4):1343-1361. doi: 10.1021/acs.jmedchem.6b01379. Epub 2017 Feb 13.
8
Inhibitors of Influenza Virus Polymerase Acidic (PA) Endonuclease: Contemporary Developments and Perspectives.
J Med Chem. 2017 May 11;60(9):3533-3551. doi: 10.1021/acs.jmedchem.6b01227. Epub 2017 Feb 7.
9
10
Fragment-Based Identification of Influenza Endonuclease Inhibitors.
J Med Chem. 2016 Jul 14;59(13):6444-54. doi: 10.1021/acs.jmedchem.6b00628. Epub 2016 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验