用于体内应用的红移偶氮苯光开关

Red-Shifting Azobenzene Photoswitches for in Vivo Use.

机构信息

Department of Chemistry, University of Toronto , 80 St. George St., Toronto, ON M5S 3H6, Canada.

Department of Chemistry, University of Pittsburgh , Chevron Science Center, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States.

出版信息

Acc Chem Res. 2015 Oct 20;48(10):2662-70. doi: 10.1021/acs.accounts.5b00270. Epub 2015 Sep 28.

Abstract

Recently, there has been a great deal of interest in using the photoisomerization of azobenzene compounds to control specific biological targets in vivo. These azo compounds can be used as research tools or, in principle, could act as optically controlled drugs. Such "photopharmaceuticals" offer the prospect of targeted drug action and an unprecedented degree of temporal control. A key feature of azo compounds designed to photoswitch in vivo is the wavelength of light required to cause the photoisomerization. To pass through tissue such as the human hand, wavelengths in the red, far-red, or ideally near infrared region are required. This Account describes our attempts to produce such azo compounds. Introducing electron-donating or push/pull substituents at the para positions delocalizes the azobenzene chromophore and leads to long wavelength absorption but usually also lowers the thermal barrier to interconversion of the isomers. Fast thermal relaxation means it is difficult to produce a large steady state fraction of the cis isomer. Thus, specifically activating or inhibiting a biological process with the cis isomer would require an impractically bright light source. We have found that introducing substituents at all four ortho positions leads to azo compounds with a number of unusual properties that are useful for in vivo photoswitching. When the para substituents are amide groups, these tetra-ortho substituted azo compounds show unusually slow thermal relaxation rates and enhanced separation of n-π* transitions of cis and trans isomers compared to analogues without ortho substituents. When para positions are substituted with amino groups, ortho methoxy groups greatly stabilize the azonium form of the compounds, in which the azo group is protonated. Azonium ions absorb strongly in the red region of the spectrum and can reach into the near-IR. These azonium ions can exhibit robust cis-trans isomerization in aqueous solutions at neutral pH. By varying the nature of ortho substituents, together with the number and nature of meta and para substituents, long wavelength switching, stability to photobleaching, stability to hydrolysis, and stability to reduction by thiols can all be crafted into a photoswitch. Some of these newly developed photoswitches can be used in whole blood and show promise for effective use in vivo. It is hoped they can be combined with appropriate bioactive targets to realize the potential of photopharmacology.

摘要

最近,人们对利用偶氮苯化合物的光异构化来控制体内特定的生物靶标产生了浓厚的兴趣。这些偶氮化合物可用作研究工具,或者原则上可以作为光控药物。这种“光药物”提供了靶向药物作用和前所未有的时间控制的前景。设计用于体内光开关的偶氮化合物的一个关键特征是引起光异构化所需的光波长。为了穿透组织,如人手,需要使用红光、远红光或理想的近红外区域的波长。本说明描述了我们生产这种偶氮化合物的尝试。在对位引入供电子或推/拉取代基可使偶氮苯发色团离域化,并导致长波长吸收,但通常也会降低顺反异构体相互转化的热势垒。快速热弛豫意味着很难产生顺式异构体的大稳态分数。因此,用顺式异构体特异性地激活或抑制生物过程需要一个不切实际的明亮光源。我们发现,在所有四个邻位引入取代基会导致偶氮化合物具有许多不寻常的性质,这些性质对于体内光开关很有用。当对位取代基为酰胺基团时,这些四邻位取代的偶氮化合物表现出异常缓慢的热弛豫速率,并且与没有邻位取代基的类似物相比,顺式和反式异构体的 n-π*跃迁分离增强。当对位被氨基取代时,邻位甲氧基基团极大地稳定了化合物的偶氮离子形式,其中偶氮基团被质子化。偶氮离子在光谱的红色区域强烈吸收,可以进入近红外区。这些偶氮离子在中性 pH 的水溶液中可以表现出稳健的顺反异构化。通过改变邻位取代基的性质,以及间位和对位取代基的数量和性质,可以将长波长切换、光漂白稳定性、水解稳定性和硫醇还原稳定性都设计到一个光开关中。其中一些新开发的光开关可用于全血,并有望在体内有效使用。希望它们可以与适当的生物活性靶标结合,以实现光药理学的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索