Suppr超能文献

用于真实人脸视频中二元人脸属性分类的具有多特征融合的分层时空概率图模型。

Hierarchical Spatio-Temporal Probabilistic Graphical Model with Multiple Feature Fusion for Binary Facial Attribute Classification in Real-World Face Videos.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2016 Jun;38(6):1185-203. doi: 10.1109/TPAMI.2015.2481396. Epub 2015 Sep 23.

Abstract

Recent literature shows that facial attributes, i.e., contextual facial information, can be beneficial for improving the performance of real-world applications, such as face verification, face recognition, and image search. Examples of face attributes include gender, skin color, facial hair, etc. How to robustly obtain these facial attributes (traits) is still an open problem, especially in the presence of the challenges of real-world environments: non-uniform illumination conditions, arbitrary occlusions, motion blur and background clutter. What makes this problem even more difficult is the enormous variability presented by the same subject, due to arbitrary face scales, head poses, and facial expressions. In this paper, we focus on the problem of facial trait classification in real-world face videos. We have developed a fully automatic hierarchical and probabilistic framework that models the collective set of frame class distributions and feature spatial information over a video sequence. The experiments are conducted on a large real-world face video database that we have collected, labelled and made publicly available. The proposed method is flexible enough to be applied to any facial classification problem. Experiments on a large, real-world video database McGillFaces [1] of 18,000 video frames reveal that the proposed framework outperforms alternative approaches, by up to 16.96 and 10.13%, for the facial attributes of gender and facial hair, respectively.

摘要

最近的文献表明,面部属性(即上下文面部信息)可以有益于提高真实应用场景的性能,例如人脸验证、人脸识别和图像搜索。面部属性的示例包括性别、肤色、面部毛发等。如何稳健地获取这些面部属性(特征)仍然是一个开放性问题,特别是在存在以下现实环境挑战的情况下:非均匀照明条件、任意遮挡、运动模糊和背景杂波。使得这个问题更加困难的是同一主体呈现的巨大可变性,由于任意的人脸比例、头部姿势和面部表情。在本文中,我们专注于真实世界人脸视频中的面部特征分类问题。我们开发了一种完全自动的分层和概率框架,该框架对视频序列中的帧类分布和特征空间信息进行建模。实验是在我们收集、标记并公开提供的大型真实人脸视频数据库上进行的。所提出的方法非常灵活,可以应用于任何面部分类问题。在大型真实世界视频数据库 McGillFaces[1]的 18000 个视频帧上的实验表明,所提出的框架在性别和面部毛发的面部属性方面,分别比替代方法高出 16.96%和 10.13%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验