Piitulainen Harri, Bourguignon Mathieu, Smeds Eero, De Tiège Xavier, Jousmäki Veikko, Hari Riitta
Brain Research Unit, Department of Neuroscience and Biomedical Engineering, Aalto University, AALTO, Espoo, Finland.
Laboratoire De Cartographie Fonctionnelle Du Cerveau, UNI-ULB Neuroscience Institute, Université Libre De Bruxelles (ULB), Bruxelles, Belgium.
Hum Brain Mapp. 2015 Dec;36(12):5168-82. doi: 10.1002/hbm.23001. Epub 2015 Sep 29.
To maintain steady motor output, distracting sensory stimuli need to be blocked. To study the effects of brief auditory and visual distractors on the human primary motor (M1) cortex, we monitored magnetoencephalographic (MEG) cortical rhythms, electromyogram (EMG) of finger flexors, and corticomuscular coherence (CMC) during right-hand pinch (force 5-7% of maximum) while 1-kHz tones and checkerboard patterns were presented for 100 ms once every 3.5-5 s. Twenty-one subjects (out of twenty-two) showed statistically significant ∼20-Hz CMC. Both distractors elicited a covert startle-like response evident in changes of force and EMG (∼50% of the background variation) but without any visible movement, followed by ∼1-s enhancement of CMC (auditory on average by 75%, P < 0.001; visual by 33%, P < 0.05) and rolandic ∼20-Hz rhythm (auditory by 14%, P < 0.05; visual by 11%, P < 0.01). Directional coupling of coherence from muscle to the M1 cortex (EMG→MEG) increased for ∼0.5 s at the onset of the CMC enhancement, but only after auditory distractor (by 105%; P < 0.05), likely reflecting startle-related proprioceptive afference. The 20-Hz enhancements occurred in the left M1 cortex and were for the auditory stimuli preceded by an early suppression (by 7%, P < 0.05). Task-unrelated distractors modulated corticospinal coupling at ∼20 Hz. We propose that the distractors triggered covert startle-like responses, resulting in proprioceptive afference to the cortex, and that they also transiently disengaged the subject's attention from the fine-motor task. As a result, the corticospinal output was readjusted to keep the contraction force stable.
为维持稳定的运动输出,需要阻断干扰性感觉刺激。为研究短暂听觉和视觉干扰因素对人类初级运动(M1)皮层的影响,我们在右手捏取动作(力量为最大值的5 - 7%)过程中监测了脑磁图(MEG)皮层节律、手指屈肌的肌电图(EMG)以及皮质肌肉相干性(CMC),同时每隔3.5 - 5秒呈现一次1千赫兹的音调以及棋盘图案,每次呈现100毫秒。22名受试者中有21名表现出具有统计学意义的约20赫兹的CMC。两种干扰因素均引发了一种隐蔽的惊吓样反应,表现为力量和EMG的变化(约为背景变化的50%),但无任何可见运动,随后CMC增强约1秒(听觉干扰平均增强75%,P < 0.001;视觉干扰增强33%,P < 0.05)以及中央沟附近约20赫兹的节律增强(听觉干扰增强14%,P < 0.05;视觉干扰增强11%,P < 0.01)。在CMC增强开始时,从肌肉到M1皮层的相干性方向耦合(EMG→MEG)增加约0.5秒,但仅在听觉干扰后出现(增加105%;P < 0.05),这可能反映了与惊吓相关的本体感觉传入。20赫兹的增强发生在左侧M1皮层,对于听觉刺激,在此之前有早期抑制(抑制7%,P < 0.05)。与任务无关的干扰因素在约20赫兹时调节了皮质脊髓耦合。我们提出,干扰因素触发了隐蔽的惊吓样反应,导致向皮层的本体感觉传入增加,并且它们还暂时使受试者的注意力从精细运动任务中分散。结果,皮质脊髓输出被重新调整以保持收缩力稳定。