Kazan Samira M, Mohammadi Siawoosh, Callaghan Martina F, Flandin Guillaume, Huber Laurentius, Leech Robert, Kennerley Aneurin, Windischberger Christian, Weiskopf Nikolaus
Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.
Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.
Neuroimage. 2016 Jan 1;124(Pt A):794-805. doi: 10.1016/j.neuroimage.2015.09.033. Epub 2015 Sep 28.
The blood oxygenation level-dependent (BOLD) signal is widely used for functional magnetic resonance imaging (fMRI) of brain function in health and disease. The statistical power of fMRI group studies is significantly hampered by high inter-subject variance due to differences in baseline vascular physiology. Several methods have been proposed to account for physiological vascularization differences between subjects and hence improve the sensitivity in group studies. However, these methods require the acquisition of additional reference scans (such as a full resting-state fMRI session or ASL-based calibrated BOLD). We present a vascular autorescaling (VasA) method, which does not require any additional reference scans. VasA is based on the observation that slow oscillations (<0.1Hz) in arterial blood CO2 levels occur naturally due to changes in respiration patterns. These oscillations yield fMRI signal changes whose amplitudes reflect the blood oxygenation levels and underlying local vascularization and vascular responsivity. VasA estimates proxies of the amplitude of these CO2-driven oscillations directly from the residuals of task-related fMRI data without the need for reference scans. The estimates are used to scale the amplitude of task-related fMRI responses, to account for vascular differences. The VasA maps compared well to cerebrovascular reactivity (CVR) maps and cerebral blood volume maps based on vascular space occupancy (VASO) measurements in four volunteers, speaking to the physiological vascular basis of VasA. VasA was validated in a wide variety of tasks in 138 volunteers. VasA increased t-scores by up to 30% in specific brain areas such as the visual cortex. The number of activated voxels was increased by up to 200% in brain areas such as the orbital frontal cortex while still controlling the nominal false-positive rate. VasA fMRI outperformed previously proposed rescaling approaches based on resting-state fMRI data and can be readily applied to any task-related fMRI data set, even retrospectively.
血氧水平依赖(BOLD)信号广泛应用于健康和疾病状态下脑功能的功能磁共振成像(fMRI)。由于基线血管生理学差异导致的受试者间高方差,显著阻碍了fMRI组研究的统计功效。已经提出了几种方法来解释受试者之间的生理血管化差异,从而提高组研究的敏感性。然而,这些方法需要采集额外的参考扫描(如完整的静息态fMRI会话或基于动脉自旋标记的校准BOLD)。我们提出了一种血管自动缩放(VasA)方法,该方法不需要任何额外的参考扫描。VasA基于这样的观察:由于呼吸模式的变化,动脉血二氧化碳水平会自然出现缓慢振荡(<0.1Hz)。这些振荡产生fMRI信号变化,其幅度反映血氧水平以及潜在的局部血管化和血管反应性。VasA直接从任务相关fMRI数据的残差中估计这些二氧化碳驱动振荡的幅度代理,而无需参考扫描。这些估计值用于缩放任务相关fMRI反应的幅度,以解释血管差异。在四名志愿者中,VasA图谱与基于血管空间占据(VASO)测量的脑血管反应性(CVR)图谱和脑血容量图谱具有良好的可比性,这说明了VasA的生理血管基础。VasA在138名志愿者的各种任务中得到了验证。在特定脑区,如视觉皮层,VasA使t分数提高了30%。在眶额皮层等脑区,激活体素的数量增加了200%,同时仍能控制名义假阳性率。VasA fMRI优于先前基于静息态fMRI数据提出的缩放方法,并且可以很容易地应用于任何任务相关的fMRI数据集,甚至可以进行回顾性应用。