Andres-Arroyo Ana, Wang Fan, Toe Wen Jun, Reece Peter
School of Physics, The University of New South Wales, Sydney, NSW, Australia.
Biomed Opt Express. 2015 Aug 27;6(9):3646-54. doi: 10.1364/BOE.6.003646. eCollection 2015 Sep 1.
Assessing the degree of heating present when a metal nanoparticle is trapped in an optical tweezers is critical for its appropriate use in biological applications as a nanoscale force sensor. Heating is necessarily present for trapped plasmonic particles because of the non-negligible extinction which contributes to an enhanced polarisability. We present a robust method for characterising the degree of heating of trapped metallic nanoparticles, using the intrinsic temperature dependence of the localised surface plasmon resonance (LSPR) to infer the temperature of the surrounding fluid at different incident laser powers. These particle specific measurements can be used to infer the rate of heating and local temperature of trapped nanoparticles. Our measurements suggest a considerable amount of a variability in the degree of heating, on the range of 414-673 K/W, for different 100 nm diameter Au nanoparticles, and we associated this with variations in the axial trapping position.
评估当金属纳米颗粒被困在光镊中时的加热程度,对于其作为纳米级力传感器在生物应用中的恰当使用至关重要。由于不可忽略的消光作用导致极化率增强,被困的等离子体颗粒必然会产生加热现象。我们提出了一种稳健的方法来表征被困金属纳米颗粒的加热程度,利用局域表面等离子体共振(LSPR)的固有温度依赖性来推断在不同入射激光功率下周围流体的温度。这些针对颗粒的测量可用于推断被困纳米颗粒的加热速率和局部温度。我们的测量表明,对于不同直径为100 nm的金纳米颗粒,加热程度存在相当大的变化,范围在414 - 673 K/W之间,我们将此与轴向捕获位置的变化联系起来。