Moradi Mahmoud, Enkavi Giray, Tajkhorshid Emad
Department of Biochemistry, Beckman Institute for Advanced Science and Technology, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Nat Commun. 2015 Sep 29;6:8393. doi: 10.1038/ncomms9393.
Membrane transporters actively translocate their substrate by undergoing large-scale structural transitions between inward- (IF) and outward-facing (OF) states ('alternating-access' mechanism). Despite extensive structural studies, atomic-level mechanistic details of such structural transitions, and as importantly, their coupling to chemical events supplying the energy, remain amongst the most elusive aspects of the function of these proteins. Here we present a quantitative, atomic-level description of the functional thermodynamic cycle for the glycerol-3-phosphate:phosphate antiporter GlpT by using a novel approach in reconstructing the free energy landscape governing the IF↔OF transition along a cyclic transition pathway involving both apo and substrate-bound states. Our results provide a fully atomic description of the complete transport process, offering a structural model for the alternating-access mechanism and substantiating the close coupling between global structural transitions and local chemical events.
膜转运蛋白通过在内向(IF)和外向(OF)状态之间进行大规模结构转变(“交替访问”机制)来主动转运其底物。尽管进行了广泛的结构研究,但这种结构转变的原子水平机制细节,以及同样重要的是,它们与提供能量的化学事件的耦合,仍然是这些蛋白质功能中最难以捉摸的方面。在这里,我们通过一种新颖的方法,在重建沿着涉及脱辅基和底物结合状态的循环转变途径控制IF↔OF转变的自由能景观时,给出了甘油-3-磷酸:磷酸反向转运蛋白GlpT功能热力学循环的定量原子水平描述。我们的结果提供了完整转运过程的完全原子描述,为交替访问机制提供了结构模型,并证实了全局结构转变与局部化学事件之间的紧密耦合。