Suppr超能文献

π共轭微孔聚合物薄膜:设计合成、导电性能及光能转换

π-Conjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions.

作者信息

Gu Cheng, Huang Ning, Chen Youchun, Qin Leiqiang, Xu Hong, Zhang Shitong, Li Fenghong, Ma Yuguang, Jiang Donglin

机构信息

Department of Materials Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787 (Japan).

State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012 (P. R. China).

出版信息

Angew Chem Int Ed Engl. 2015 Nov 9;54(46):13594-8. doi: 10.1002/anie.201506570. Epub 2015 Sep 29.

Abstract

Conjugated microporous polymers are a unique class of polymers that combine extended π-conjugation with inherent porosity. However, these polymers are synthesized through solution-phase reactions to yield insoluble and unprocessable solids, which preclude not only the evaluation of their conducting properties but also the fabrication of thin films for device implementation. Here, we report a strategy for the synthesis of thin films of π-conjugated microporous polymers by designing thiophene-based electropolymerization at the solution-electrode interface. High-quality films are prepared on a large area of various electrodes, the film thickness is controllable, and the films are used for device fabrication. These films are outstanding hole conductors and, upon incorporation of fullerenes into the pores, function as highly efficient photoactive layers for energy conversions. Our film strategy may boost the applications in photocatalysis, energy storage, and optoelectronics.

摘要

共轭微孔聚合物是一类独特的聚合物,它将扩展的π共轭与固有孔隙率结合在一起。然而,这些聚合物是通过溶液相反应合成的,生成的是不溶性和不可加工的固体,这不仅妨碍了对其导电性能的评估,也阻碍了用于器件制造的薄膜的制备。在此,我们报告了一种通过设计在溶液-电极界面进行基于噻吩的电聚合来合成π共轭微孔聚合物薄膜的策略。在大面积的各种电极上制备了高质量的薄膜,薄膜厚度可控,且这些薄膜用于器件制造。这些薄膜是出色的空穴导体,并且在将富勒烯纳入孔隙后,可作为用于能量转换的高效光活性层。我们的薄膜策略可能会推动其在光催化、能量存储和光电子学方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e82/4678513/8a64edb9dcd0/anie0054-13594-fig001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验