Morin Cedric, Corallini Serena, Carreaud Julie, Vaney Jean-Baptiste, Delaizir Gaelle, Crivello Jean-Claude, Lopes Elsa Branco, Piarristeguy Andrea, Monnier Judith, Candolfi Christophe, Nassif Vivian, Cuello Gabriel Julio, Pradel Annie, Goncalves Antonio Pereira, Lenoir Bertrand, Alleno Eric
Institut de Chimie et des Matériaux Paris Est (ICMPE), UMR 7182 CNRS- Université Paris-Est Créteil , Thiais, France.
Institut Charles Gerhardt (ICG), UMR 5253 CNRS- Université de Montpellier , Montpellier, France.
Inorg Chem. 2015 Oct 19;54(20):9936-47. doi: 10.1021/acs.inorgchem.5b01676. Epub 2015 Sep 29.
Metastable β-As2Te3 (R3̅m, a = 4.047 Å and c = 29.492 Å at 300 K) is isostructural to layered Bi2Te3 and is known for similarly displaying good thermoelectric properties around 400 K. Crystallizing glassy-As2Te3 leads to multiphase samples, while β-As2Te3 could indeed be synthesized with good phase purity (97%) by melt quenching. As expected, β-As2Te3 reconstructively transforms into stable α-As2Te3 (C2/m, a = 14.337 Å, b = 4.015 Å, c = 9.887 Å, and β = 95.06°) at 480 K. This β → α transformation can be seen as the displacement of part of the As atoms from their As2Te3 layers into the van der Waals bonding interspace. Upon cooling, β-As2Te3 displacively transforms in two steps below T(S1) = 205-210 K and T(S2) = 193-197 K into a new β'-As2Te3 allotrope. These reversible and first-order phase transitions give rise to anomalies in the resistance and in the calorimetry measurements. The new monoclinic β'-As2Te3 crystal structure (P2(1)/m, a = 6.982 Å, b = 16.187 Å, c = 10.232 Å, β = 103.46° at 20 K) was solved from Rietveld refinements of X-ray and neutron powder patterns collected at low temperatures. These analyses showed that the distortion undergone by β-As2Te3 is accompanied by a 4-fold modulation along its b axis. In agreement with our experimental results, electronic structure calculations indicate that all three structures are semiconducting with the α-phase being the most stable one and the β'-phase being more stable than the β-phase. These calculations also confirm the occurrence of a van der Waals interspace between covalently bonded As2Te3 layers in all three structures.
亚稳的β - As₂Te₃(R3̅m,300 K时a = 4.047 Å,c = 29.492 Å)与层状Bi₂Te₃同构,并且因在400 K左右同样显示出良好的热电性能而闻名。玻璃态As₂Te₃结晶会导致多相样品,而β - As₂Te₃确实可以通过熔体淬火以良好的相纯度(97%)合成。正如预期的那样,β - As₂Te₃在480 K时重构转变为稳定的α - As₂Te₃(C2/m,a = 14.337 Å,b = 4.015 Å,c = 9.887 Å,β = 95.06°)。这种β→α转变可以看作是部分As原子从其As₂Te₃层位移到范德华键合间隙中。冷却时,β - As₂Te₃在低于T(S1) = 205 - 210 K和T(S2) = 193 - 197 K的两个步骤中位移转变为一种新的β'- As₂Te₃同素异形体。这些可逆的一级相变导致电阻和量热测量中出现异常。新的单斜β'- As₂Te₃晶体结构(P2(1)/m,20 K时a = 6.982 Å,b = 16.187 Å,c = 10.232 Å,β = 103.46°)是通过对低温下收集的X射线和中子粉末图谱进行Rietveld精修解析得到的。这些分析表明,β - As₂Te₃经历的畸变伴随着沿其b轴的4倍调制。与我们的实验结果一致,电子结构计算表明,所有三种结构都是半导体,α相最稳定,β'相比β相更稳定。这些计算还证实了在所有三种结构中,共价键合的As₂Te₃层之间存在范德华间隙。