Suppr超能文献

溶液中胶体纳米片的超低阈值多光子泵浦激光发射。

Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution.

作者信息

Li Mingjie, Zhi Min, Zhu Hai, Wu Wen-Ya, Xu Qing-Hua, Jhon Mark Hyunpong, Chan Yinthai

机构信息

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.

Institute of High Performance Computing A*STAR, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.

出版信息

Nat Commun. 2015 Sep 30;6:8513. doi: 10.1038/ncomms9513.

Abstract

Although multiphoton-pumped lasing from a solution of chromophores is important in the emerging fields of nonlinear optofluidics and bio-photonics, conventionally used organic dyes are often rendered unsuitable because of relatively small multiphoton absorption cross-sections and low photostability. Here, we demonstrate highly photostable, ultralow-threshold multiphoton-pumped biexcitonic lasing from a solution of colloidal CdSe/CdS nanoplatelets within a cuvette-based Fabry-Pérot optical resonator. We find that colloidal nanoplatelets surprisingly exhibit an optimal lateral size that minimizes lasing threshold. These nanoplatelets possess very large gain cross-sections of 7.3 × 10(-14) cm(2) and ultralow lasing thresholds of 1.2 and 4.3 mJ cm(-2) under two-photon (λexc=800 nm) and three-photon (λexc=1.3 μm) excitation, respectively. The highly polarized emission from the nanoplatelet laser shows no significant photodegradation over 10(7) laser shots. These findings constitute a more comprehensive understanding of the utility of colloidal semiconductor nanoparticles as the gain medium in high-performance frequency-upconversion liquid lasers.

摘要

尽管发色团溶液的多光子泵浦激光在新兴的非线性光流体学和生物光子学领域很重要,但传统使用的有机染料由于相对较小的多光子吸收截面和低光稳定性,往往不太适用。在此,我们展示了在基于比色皿的法布里-珀罗光学谐振腔内,从胶体CdSe/CdS纳米片溶液中实现的高光稳定性、超低阈值多光子泵浦双激子激光。我们发现,胶体纳米片出人意料地展现出一个使激光阈值最小化的最佳横向尺寸。这些纳米片具有非常大的增益截面,在双光子(λexc = 800 nm)和三光子(λexc = 1.3 μm)激发下,增益截面分别为7.3×10(-14) cm(2),超低激光阈值分别为1.2和4.3 mJ cm(-2)。纳米片激光器发出的高偏振光在超过10(7)次激光脉冲发射过程中未显示出明显的光降解。这些发现构成了对胶体半导体纳米颗粒作为高性能频率上转换液体激光器增益介质效用的更全面理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8c9/4598837/966305c01d92/ncomms9513-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验