Suppr超能文献

使用隐马尔可夫模型的群组关联测试。

Group association test using a hidden Markov model.

作者信息

Cheng Yichen, Dai James Y, Kooperberg Charles

机构信息

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

出版信息

Biostatistics. 2016 Apr;17(2):221-34. doi: 10.1093/biostatistics/kxv035. Epub 2015 Sep 28.

Abstract

In the genomic era, group association tests are of great interest. Due to the overwhelming number of individual genomic features, the power of testing for association of a single genomic feature at a time is often very small, as are the effect sizes for most features. Many methods have been proposed to test association of a trait with a group of features within a functional unit as a whole, e.g. all SNPs in a gene, yet few of these methods account for the fact that generally a substantial proportion of the features are not associated with the trait. In this paper, we propose to model the association for each feature in the group as a mixture of features with no association and features with non-zero associations to explicitly account for the possibility that a fraction of features may not be associated with the trait while other features in the group are. The feature-level associations are first estimated by generalized linear models; the sequence of these estimated associations is then modeled by a hidden Markov chain. To test for global association, we develop a modified likelihood ratio test based on a log-likelihood function that ignores higher order dependency plus a penalty term. We derive the asymptotic distribution of the likelihood ratio test under the null hypothesis. Furthermore, we obtain the posterior probability of association for each feature, which provides evidence of feature-level association and is useful for potential follow-up studies. In simulations and data application, we show that our proposed method performs well when compared with existing group association tests especially when there are only few features associated with the outcome.

摘要

在基因组时代,群体关联测试备受关注。由于个体基因组特征数量众多,一次测试单个基因组特征的关联能力通常非常小,大多数特征的效应大小也是如此。已经提出了许多方法来测试一个性状与一个功能单元内一组特征的关联,例如一个基因中的所有单核苷酸多态性(SNP),然而这些方法中很少有考虑到这样一个事实,即通常很大一部分特征与该性状不相关。在本文中,我们建议将组内每个特征的关联建模为无关联特征和非零关联特征的混合,以明确考虑一部分特征可能与该性状不相关而组内其他特征相关的可能性。首先通过广义线性模型估计特征水平的关联;然后通过隐马尔可夫链对这些估计关联的序列进行建模。为了测试全局关联,我们基于忽略高阶依赖性的对数似然函数加上一个惩罚项开发了一种改进的似然比检验。我们推导了原假设下似然比检验的渐近分布。此外,我们获得了每个特征的关联后验概率,这为特征水平的关联提供了证据,并且对潜在的后续研究很有用。在模拟和数据应用中,我们表明,与现有的群体关联测试相比,我们提出的方法表现良好,特别是当只有少数特征与结果相关时。

相似文献

1
Group association test using a hidden Markov model.使用隐马尔可夫模型的群组关联测试。
Biostatistics. 2016 Apr;17(2):221-34. doi: 10.1093/biostatistics/kxv035. Epub 2015 Sep 28.
4
Calibrating E-values for hidden Markov models using reverse-sequence null models.使用反向序列空模型校准隐马尔可夫模型的E值。
Bioinformatics. 2005 Nov 15;21(22):4107-15. doi: 10.1093/bioinformatics/bti629. Epub 2005 Aug 25.
6
Likelihood-ratio tests for hidden Markov models.隐马尔可夫模型的似然比检验。
Biometrics. 2000 Sep;56(3):742-7. doi: 10.1111/j.0006-341x.2000.00742.x.
7
Semi-Markov Arnason-Schwarz models.半马尔可夫阿纳森 - 施瓦茨模型
Biometrics. 2016 Jun;72(2):619-28. doi: 10.1111/biom.12446. Epub 2015 Nov 19.

本文引用的文献

8
Optimal tests for rare variant effects in sequencing association studies.测序关联研究中罕见变异效应的最优检验。
Biostatistics. 2012 Sep;13(4):762-75. doi: 10.1093/biostatistics/kxs014. Epub 2012 Jun 14.
10
Comprehensive approach to analyzing rare genetic variants.综合分析罕见遗传变异。
PLoS One. 2010 Nov 3;5(11):e13584. doi: 10.1371/journal.pone.0013584.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验