Suppr超能文献

基于后验一致性的因果罕见变异的贝叶斯检测。

Bayesian detection of causal rare variants under posterior consistency.

机构信息

Department of Statistics, Texas A&M University, College Station, Texas, United States of America.

出版信息

PLoS One. 2013 Jul 26;8(7):e69633. doi: 10.1371/journal.pone.0069633. Print 2013.

Abstract

Identification of causal rare variants that are associated with complex traits poses a central challenge on genome-wide association studies. However, most current research focuses only on testing the global association whether the rare variants in a given genomic region are collectively associated with the trait. Although some recent work, e.g., the Bayesian risk index method, have tried to address this problem, it is unclear whether the causal rare variants can be consistently identified by them in the small-n-large-P situation. We develop a new Bayesian method, the so-called Bayesian Rare Variant Detector (BRVD), to tackle this problem. The new method simultaneously addresses two issues: (i) (Global association test) Are there any of the variants associated with the disease, and (ii) (Causal variant detection) Which variants, if any, are driving the association. The BRVD ensures the causal rare variants to be consistently identified in the small-n-large-P situation by imposing some appropriate prior distributions on the model and model specific parameters. The numerical results indicate that the BRVD is more powerful for testing the global association than the existing methods, such as the combined multivariate and collapsing test, weighted sum statistic test, RARECOVER, sequence kernel association test, and Bayesian risk index, and also more powerful for identification of causal rare variants than the Bayesian risk index method. The BRVD has also been successfully applied to the Early-Onset Myocardial Infarction (EOMI) Exome Sequence Data. It identified a few causal rare variants that have been verified in the literature.

摘要

鉴定与复杂性状相关的因果罕见变异是全基因组关联研究的核心挑战。然而,大多数当前的研究仅关注测试给定基因组区域中的罕见变异是否整体上与性状相关的全局关联。尽管最近的一些工作,例如贝叶斯风险指数方法,已经尝试解决这个问题,但在小样本大 P 的情况下,它们是否能够一致地识别因果罕见变异尚不清楚。我们开发了一种新的贝叶斯方法,即所谓的贝叶斯罕见变异检测器(BRVD),以解决这个问题。该新方法同时解决了两个问题:(i)(全局关联测试)是否存在与疾病相关的变异,以及(ii)(因果变异检测)如果存在,哪些变异在驱动关联。BRVD 通过对模型和模型特定参数施加一些适当的先验分布,确保在小样本大 P 的情况下能够一致地识别因果罕见变异。数值结果表明,BRVD 在测试全局关联方面比现有的方法(如联合多变量和压缩测试、加权和统计量测试、RARECOVER、序列核关联测试和贝叶斯风险指数)更有效,并且在识别因果罕见变异方面也比贝叶斯风险指数方法更有效。BRVD 还成功地应用于早发性心肌梗死(EOMI)外显子组序列数据。它鉴定了一些已在文献中验证的因果罕见变异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2468/3724943/7a7949180d07/pone.0069633.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验