Hagedorn Mary, Carter Virginia L
Department of Reproductive Sciences, Smithsonian Conservation Biology Institute- National Zoological Park, Front Royal, VA, United States of America; Hawai'i Institute of Marine Biology, University of Hawaii, Kaneohe, HI, United States of America.
PLoS One. 2015 Sep 30;10(9):e0136358. doi: 10.1371/journal.pone.0136358. eCollection 2015.
Coral reefs are some of the most diverse and productive ecosystems on the planet, but are threatened by global and local stressors, mandating the need for incorporating ex situ conservation practices. One approach that is highly protective is the development of genome resource banks that preserve the species and its genetic diversity. A critical component of the reef are the endosymbiotic algae, Symbiodinium sp., living within most coral that transfer energy-rich sugars to their hosts. Although Symbiodinium are maintained alive in culture collections around the world, the cryopreservation of these algae to prevent loss and genetic drift is not well-defined. This study examined the quantum yield physiology and freezing protocols that resulted in survival of Symbiodinium at 24 h post-thawing. Only the ultra-rapid procedure called vitrification resulted in success whereas conventional slow freezing protocols did not. We determined that success also depended on using a thin film of agar with embedded Symbiodinium on Cryotops, a process that yielded a post-thaw viability of >50% in extracted and vitrified Symbiodinium from Fungia scutaria, Pocillopora damicornis and Porites compressa. Additionally, there also was a seasonal influence on vitrification success as the best post-thaw survival of F. scutaria occurred in winter and spring compared to summer and fall (P < 0.05). These findings lay the foundation for developing a viable genome resource bank for the world's Symbiodinium that, in turn, will not only protect this critical element of coral functionality but serve as a resource for understanding the complexities of symbiosis, support selective breeding experiments to develop more thermally resilient strains of coral, and provide a 'gold-standard' genomics collection, allowing for full genomic sequencing of unique Symbiodinium strains.
珊瑚礁是地球上最多样化和生产力最高的生态系统之一,但受到全球和局部压力源的威胁,因此需要采用迁地保护措施。一种高度保护的方法是建立基因组资源库,以保护物种及其遗传多样性。珊瑚礁的一个关键组成部分是共生藻(Symbiodinium sp.),它们生活在大多数珊瑚体内,将富含能量的糖类传递给宿主。尽管共生藻在世界各地的培养物保藏中心中得以存活,但对这些藻类进行冷冻保存以防止损失和遗传漂变的方法尚未明确界定。本研究考察了量子产率生理学和冷冻方案,这些方案能使共生藻在解冻后24小时内存活。只有称为玻璃化的超快速程序取得了成功,而传统的慢速冷冻方案则没有。我们确定,成功还取决于在冷冻载片上使用嵌入共生藻的琼脂薄膜,该过程使从盾形蕈珊瑚(Fungia scutaria)、鹿角杯形珊瑚(Pocillopora damicornis)和扁缩滨珊瑚(Porites compressa)中提取并玻璃化的共生藻解冻后活力>50%。此外,玻璃化成功还存在季节性影响,盾形蕈珊瑚解冻后最佳存活率出现在冬季和春季,而不是夏季和秋季(P<0.05)。这些发现为建立一个可行的全球共生藻基因组资源库奠定了基础,这反过来不仅将保护珊瑚功能的这一关键要素,还将成为理解共生复杂性的资源,支持选择性育种实验以培育更具耐热性的珊瑚菌株,并提供一个“金标准”基因组学文库,从而能够对独特的共生藻菌株进行全基因组测序。