Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA.
BMC Evol Biol. 2012 Nov 12;12:217. doi: 10.1186/1471-2148-12-217.
The symbiosis between reef-building corals and photosynthetic dinoflagellates (Symbiodinium) is an integral part of the coral reef ecosystem, as corals are dependent on Symbiodinium for the majority of their energy needs. However, this partnership is increasingly at risk due to changing climatic conditions. It is thought that functional diversity within Symbiodinium may allow some corals to rapidly adapt to different environments by changing the type of Symbiodinium with which they partner; however, very little is known about the molecular basis of the functional differences among symbiont groups. One group of Symbiodinium that is hypothesized to be important for the future of reefs is clade D, which, in general, seems to provide the coral holobiont (i.e., coral host and associated symbiont community) with elevated thermal tolerance. Using high-throughput sequencing data from field-collected corals we assembled, de novo, draft transcriptomes for Symbiodinium clades C and D. We then explore the functional basis of thermal tolerance in clade D by comparing rates of coding sequence evolution among the four clades of Symbiodinium most commonly found in reef-building corals (A-D).
We are able to highlight a number of genes and functional categories as candidates for involvement in the increased thermal tolerance of clade D. These include a fatty acid desaturase, molecular chaperones and proteins involved in photosynthesis and the thylakoid membrane. We also demonstrate that clades C and D co-occur within most of the sampled colonies of Acropora hyacinthus, suggesting widespread potential for this coral species to acclimatize to changing thermal conditions via 'shuffling' the proportions of these two clades from within their current symbiont communities.
Transcriptome-wide analysis confirms that the four main Symbiodinium clades found within corals exhibit extensive evolutionary divergence (18.5-27.3% avg. pairwise nucleotide difference). Despite these evolutionary distinctions, many corals appear to host multiple clades simultaneously, which may allow for rapid acclimatization to changing environmental conditions. This study provides a first step toward understanding the molecular basis of functional differences between Symbiodinium clades by highlighting a number of genes with signatures consistent with positive selection along the thermally tolerant clade D lineage.
造礁珊瑚与光合甲藻(Symbiodinium)之间的共生关系是珊瑚礁生态系统的重要组成部分,因为珊瑚依赖 Symbiodinium 来满足其大部分的能量需求。然而,由于气候变化,这种共生关系正面临越来越大的风险。人们认为,Symbiodinium 内部的功能多样性可能使一些珊瑚通过改变与其共生的 Symbiodinium 类型,快速适应不同的环境;然而,我们对共生体群体之间功能差异的分子基础知之甚少。被认为对珊瑚礁未来很重要的 Symbiodinium 群体之一是 clade D,一般来说,clade D 似乎为珊瑚共生体(即珊瑚宿主及其相关共生体群落)提供了更高的热耐受性。我们利用从野外采集的珊瑚获得的高通量测序数据,从头组装了 clade C 和 D 的 Symbiodinium 转录本。然后,我们通过比较在造礁珊瑚中最常见的四个 Symbiodinium 类群(A-D)中的编码序列进化率,来探索 clade D 耐热性的功能基础。
我们能够突出一些基因和功能类别作为参与 clade D 耐热性增加的候选者。这些基因包括脂肪酸去饱和酶、分子伴侣和参与光合作用和类囊体膜的蛋白质。我们还证明,clade C 和 D 共同存在于大多数采样的 Acropora hyacinthus 珊瑚的共生体群落中,这表明该珊瑚物种通过在其当前共生体群落中“混合”这两个类群的比例,有广泛的潜力来适应不断变化的热条件。
全转录组分析证实,在珊瑚中发现的四个主要 Symbiodinium 类群表现出广泛的进化分歧(平均成对核苷酸差异 18.5-27.3%)。尽管存在这些进化差异,但许多珊瑚似乎同时宿主多个类群,这可能使它们能够快速适应环境变化。本研究通过突出一些具有与耐热 clade D 谱系正选择特征一致的基因,为理解 Symbiodinium 类群之间功能差异的分子基础迈出了第一步。