Suppr超能文献

锂离子电池中作为阳极材料的石墨烯/SnO₂干凝胶杂化物的简易制备。

Facile Preparation of Graphene/SnO₂ Xerogel Hybrids as the Anode Material in Li-Ion Batteries.

机构信息

Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana 46202, United States.

出版信息

ACS Appl Mater Interfaces. 2015 Dec 16;7(49):27087-95. doi: 10.1021/acsami.5b05819. Epub 2015 Dec 7.

Abstract

SnO2 has been considered as one of the most promising anode materials for Li-ion batteries due to its theoretical ability to store up to 8.4 Li(+). However, it suffers from poor rate performance and short cycle life due to the low intrinsic electrical conductivity and particle pulverization caused by the large volume change upon lithiation/delithiation. Here, we report a facile synthesis of graphene/SnO2 xerogel hybrids as anode materials using epoxide-initiated gelation method. The synthesized hybrid materials (19% graphene/SnO2 xerogel) exhibit excellent electrochemical performance: high specific capacity, stable cyclability, and good rate capability. Even cycled at a high current density of 1 A/g for 300 cycles, the hybrid electrode can still deliver a specific capacity of about 380 mAh/g, corresponding to more than 60% capacity retention. The incorporation of graphene sheets provides fast electron transfer between the interfaces of the graphene nanosheets and the SnO2 and a short lithium ion diffusion path. The porous structure of graphene/xerogel and the strong interaction between SnO2 and graphene can effectively accommodate the volume change and tightly confine the formed Li2O and Sn nanoparticles, thus preventing the irreversible capacity degradation.

摘要

SnO2 由于其理论上能够储存高达 8.4Li(+),因此被认为是最有前途的锂离子电池阳极材料之一。然而,由于其内在电导率低,以及在锂化/脱锂过程中体积变化较大导致的颗粒粉碎,其倍率性能和循环寿命较差。在这里,我们报道了一种使用环氧化物引发凝胶化法制备石墨烯/SnO2 气凝胶杂化物作为阳极材料的简便合成方法。合成的杂化材料(19%石墨烯/SnO2 气凝胶)表现出优异的电化学性能:高比容量、稳定的循环性能和良好的倍率性能。即使在 1A/g 的高电流密度下循环 300 次,该混合电极仍能提供约 380mAh/g 的比容量,容量保持率超过 60%。石墨烯片的加入提供了石墨烯纳米片和 SnO2 之间的快速电子转移和锂离子扩散的短路径。石墨烯/气凝胶的多孔结构以及 SnO2 和石墨烯之间的强相互作用可以有效地容纳体积变化,并紧密限制形成的 Li2O 和 Sn 纳米颗粒,从而防止不可逆容量的降解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验