Keedy Daniel A, Kenner Lillian R, Warkentin Matthew, Woldeyes Rahel A, Hopkins Jesse B, Thompson Michael C, Brewster Aaron S, Van Benschoten Andrew H, Baxter Elizabeth L, Uervirojnangkoorn Monarin, McPhillips Scott E, Song Jinhu, Alonso-Mori Roberto, Holton James M, Weis William I, Brunger Axel T, Soltis S Michael, Lemke Henrik, Gonzalez Ana, Sauter Nicholas K, Cohen Aina E, van den Bedem Henry, Thorne Robert E, Fraser James S
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States.
Department of Physics, Cornell University, Ithaca, United States.
Elife. 2015 Sep 30;4:e07574. doi: 10.7554/eLife.07574.
Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences of these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180--240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.
在原子层面确定动态蛋白质相互转换的构象是结构生物学面临的一项重大挑战。此前已发现,动态酶亲环蛋白A(CypA)活性位点的构象异质性与其催化功能相关,但这些残基不同构象之间的关联程度尚不清楚。在此,我们通过多温度同步辐射晶体学和固定靶X射线自由电子激光(XFEL)晶体学比较了CypA的构象系综。XFEL实验的破坏前衍射特性提供了一个无辐射损伤的视角,可观察CypA功能上重要的替代构象,证实了早期基于同步辐射的结果。我们利用跨越100 - 310 K的八个同步辐射数据集监测了这些替代构象的温度依赖性。多构象模型表明,CypA中的许多替代构象仅在240 K及以上出现,而其他一些构象在180 K及以下仍然存在或开始出现。这些结果表明,在180 - 240 K之间构象异质性存在复杂的演变,这涉及热失活以及晶体中蛋白质运动的溶剂驱动停滞。动态活性位点网络内缺乏对温度的单一共享构象响应,为构象洗牌模型提供了证据,即在网络中间一个大芳香环的旋转异构体状态之间的交换会改变网络中其他残基的构象系综。总之,我们的多温度分析和XFEL数据推动了新一代温度和时间分辨实验的开展,以从结构上表征蛋白质功能的动态基础。