Uervirojnangkoorn Monarin, Zeldin Oliver B, Lyubimov Artem Y, Hattne Johan, Brewster Aaron S, Sauter Nicholas K, Brunger Axel T, Weis William I
Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.
Janelia Research Campus, Ashburn, United States.
Elife. 2015 Mar 17;4:e05421. doi: 10.7554/eLife.05421.
There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.
X射线自由电子激光(XFEL)在确定难以用当前同步辐射源解决的大分子晶体结构方面具有巨大潜力。先前的XFEL研究通常涉及收集数千到数百万张衍射图像,部分原因是数据处理方法的局限性。我们基于经典的后期精修技术实现了一个数据处理系统,该系统适用于XFEL衍射数据的特定属性。当应用于使用各种样品输送系统和XFEL光束参数收集的三种不同蛋白质的XFEL数据时,我们的方法提高了衍射数据的质量以及由此产生的精修原子模型和电子密度图的质量。此外,组装准确数据集所需的反射观测次数可以减少到几次。这些进展将有助于扩大XFEL晶体学在具有挑战性的生物系统中的适用性,包括样品有限的情况。