Suppr超能文献

过氧化氢存在下丙酮酸的脱羧机制

Mechanism of Decarboxylation of Pyruvic Acid in the Presence of Hydrogen Peroxide.

作者信息

Lopalco Antonio, Dalwadi Gautam, Niu Sida, Schowen Richard L, Douglas Justin, Stella Valentino J

机构信息

Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047.

Nuclear Magnetic Resonance Laboratory, Lawrence, Kansas 66045.

出版信息

J Pharm Sci. 2016 Feb;105(2):705-713. doi: 10.1002/jps.24653. Epub 2016 Jan 29.

Abstract

The purpose of this work was to probe the rate and mechanism of rapid decarboxylation of pyruvic acid in the presence of hydrogen peroxide (H2O2) to acetic acid and carbon dioxide over the pH range 2-9 at 25 °C, utilizing UV spectrophotometry, high performance liquid chromatography (HPLC), and proton and carbon nuclear magnetic resonance spectrometry ((1)H, (13)C-NMR). Changes in UV absorbance at 220 nm were used to determine the kinetics as the reaction was too fast to follow by HPLC or NMR in much of the pH range. The rate constants for the reaction were determined in the presence of molar excess of H2O2 resulting in pseudo first-order kinetics. No buffer catalysis was observed. The calculated second-order rate constants for the reaction followed a sigmoidal shape with pH-independent regions below pH 3 and above pH 7 but increased between pH 4 and 6. Between pH 4 and 9, the results were in agreement with a change from rate-determining nucleophilic attack of the deprotonated peroxide species, HOO(-), on the α-carbonyl group followed by rapid decarboxylation at pH values below 6 to rate-determining decarboxylation above pH 7. The addition of H2O2 to ethyl pyruvate was also characterized.

摘要

本研究的目的是利用紫外分光光度法、高效液相色谱法(HPLC)以及质子和碳核磁共振光谱法((1)H、(13)C-NMR),探究在25°C下,pH值范围为2至9时,过氧化氢(H2O2)存在下丙酮酸快速脱羧生成乙酸和二氧化碳的速率及机制。由于在大部分pH范围内反应速度太快,HPLC或NMR无法跟踪,因此利用220 nm处紫外吸光度的变化来确定动力学。在过氧化氢摩尔过量的情况下测定反应的速率常数,从而得到伪一级动力学。未观察到缓冲催化作用。计算得到的反应二级速率常数呈S形,在pH值低于3和高于7时存在与pH无关的区域,但在pH值4至6之间增加。在pH值4至9之间,结果与以下情况一致:在pH值低于6时,反应速率由去质子化的过氧化物物种HOO(-)对α-羰基的亲核进攻决定,随后快速脱羧;在pH值高于7时,反应速率由脱羧决定。还对向丙酮酸乙酯中添加H2O2进行了表征。

相似文献

1
Mechanism of Decarboxylation of Pyruvic Acid in the Presence of Hydrogen Peroxide.
J Pharm Sci. 2016 Feb;105(2):705-713. doi: 10.1002/jps.24653. Epub 2016 Jan 29.
2
Effect of Molecular Structure on the Relative Hydrogen Peroxide Scavenging Ability of Some α-Keto Carboxylic Acids.
J Pharm Sci. 2016 Sep;105(9):2879-2885. doi: 10.1016/j.xphs.2016.03.041. Epub 2016 May 18.
6
Mechanism of decarboxylation of p-aminosalicylic acid.
J Pharm Sci. 1985 Dec;74(12):1274-82. doi: 10.1002/jps.2600741207.
7
Color properties of four cyanidin-pyruvic acid adducts.
J Agric Food Chem. 2006 Sep 6;54(18):6894-903. doi: 10.1021/jf061085b.
9
Kinetics and mechanism of peroxymonocarbonate formation.
Inorg Chem. 2010 Dec 20;49(24):11287-96. doi: 10.1021/ic1007389. Epub 2010 Nov 15.

引用本文的文献

1
Trihydroxybenzaldoximes are Redox Cycling Inhibitors of ThDP-Dependent DXP Synthase.
ACS Chem Biol. 2025 Jun 20;20(6):1195-1211. doi: 10.1021/acschembio.5c00025. Epub 2025 May 18.
2
Rival phytoplankton contribute to the cross protection of from oxidative stress.
Appl Environ Microbiol. 2025 May 21;91(5):e0112824. doi: 10.1128/aem.01128-24. Epub 2025 Apr 10.
3
Novel cathodic and anodic dual-emitting electrochemiluminescence of Ru(bpy)/α-keto acid system.
Mikrochim Acta. 2024 Jul 26;191(8):486. doi: 10.1007/s00604-024-06554-3.
5
Carbonyl Migration in Uronates Affords a Potential Prebiotic Pathway for Pentose Production.
JACS Au. 2023 Sep 7;3(9):2522-2535. doi: 10.1021/jacsau.3c00299. eCollection 2023 Sep 25.
6
UVA-induced metabolic changes in non-malignant skin cells and the potential role of pyruvate as antioxidant.
Photochem Photobiol Sci. 2023 Aug;22(8):1889-1899. doi: 10.1007/s43630-023-00419-z. Epub 2023 May 17.
7
Real-Time Pyruvate Chemical Conversion Monitoring Enabled by PHIP.
J Am Chem Soc. 2023 Mar 15;145(10):5864-5871. doi: 10.1021/jacs.2c13198. Epub 2023 Mar 1.
8
Identification of Potential Artefacts in In Vitro Measurement of Vanadium-Induced Reactive Oxygen Species (ROS) Production.
Int J Environ Res Public Health. 2022 Nov 18;19(22):15214. doi: 10.3390/ijerph192215214.
9
Heterotrophic Bacteria Dominate Catalase Expression during Blooms.
Appl Environ Microbiol. 2022 Jul 26;88(14):e0254421. doi: 10.1128/aem.02544-21. Epub 2022 Jul 5.

本文引用的文献

2
Low-temperature NMR characterization of reaction of sodium pyruvate with hydrogen peroxide.
J Phys Chem A. 2015 Feb 12;119(6):966-77. doi: 10.1021/jp511831b. Epub 2015 Jan 29.
3
Chemical drug stability in lipids, modified lipids, and polyethylene oxide-containing formulations.
Pharm Res. 2013 Dec;30(12):3018-28. doi: 10.1007/s11095-013-1051-2. Epub 2013 May 2.
4
Impact of excipient interactions on solid dosage form stability.
Pharm Res. 2012 Oct;29(10):2660-83. doi: 10.1007/s11095-012-0782-9. Epub 2012 Jun 16.
5
Effect of antioxidants and silicates on peroxides in povidone.
J Pharm Sci. 2012 Jan;101(1):127-39. doi: 10.1002/jps.22729. Epub 2011 Aug 23.
6
Reactive impurities in excipients: profiling, identification and mitigation of drug-excipient incompatibility.
AAPS PharmSciTech. 2011 Dec;12(4):1248-63. doi: 10.1208/s12249-011-9677-z. Epub 2011 Sep 27.
7
Is pyruvate an endogenous anti-inflammatory molecule?
Nutrition. 2006 Sep;22(9):965-72. doi: 10.1016/j.nut.2006.05.009. Epub 2006 Jun 30.
8
The stability of antibacterials in polyethylene glycol mixtures.
J Pharm Pharmacol. 1961 Oct;13:620-4. doi: 10.1111/j.2042-7158.1961.tb11879.x.
9
Peroxide formation in polysorbate 80 and protein stability.
J Pharm Sci. 2002 Oct;91(10):2252-64. doi: 10.1002/jps.10216.
10
Stabilization of pharmaceuticals to oxidative degradation.
Pharm Dev Technol. 2002 Jan;7(1):1-32. doi: 10.1081/pdt-120002237.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验