Suppr超能文献

过氧一碳酸盐的形成动力学和机理。

Kinetics and mechanism of peroxymonocarbonate formation.

机构信息

Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States.

出版信息

Inorg Chem. 2010 Dec 20;49(24):11287-96. doi: 10.1021/ic1007389. Epub 2010 Nov 15.

Abstract

The kinetics and mechanism of peroxymonocarbonate (HCO(4)(-)) formation in the reaction of hydrogen peroxide with bicarbonate have been investigated for the pH 6-9 range. A double pH jump method was used in which (13)C-labeled bicarbonate solutions are first acidified to produce (13)CO(2) and then brought to higher pH values by addition of base in the presence of hydrogen peroxide. The time evolution of the (13)C NMR spectrum was used to establish the competitive formation and subsequent equilibration of bicarbonate and peroxymonocarbonate following the second pH jump. Kinetic simulations are consistent with a mechanism for the bicarbonate reaction with peroxide in which the initial formation of CO(2) via dehydration of bicarbonate is followed by reaction of CO(2) with H(2)O(2) (perhydration) and its conjugate base HOO(-) (base-catalyzed perhydration). The rate of peroxymonocarbonate formation from bicarbonate increases with decreasing pH because of the increased availability of CO(2) as an intermediate. The selectivity for formation of HCO(4)(-) relative to the hydration product HCO(3)(-) increases with increasing pH as a consequence of the HOO(-) pathway and the slower overall equilibration rate, and this pH dependence allows estimation of rate constants for the reaction of CO(2) with H(2)O(2) and HOO(-) at 25 °C (2 × 10(-2) M(-1) s(-1) and 280 M(-1) s(-1), respectively). The contributions of the HOO(-) and H(2)O(2) pathways are comparable at pH 8. In contrast to the perhydration of many other common inorganic and organic acids, the facile nature of the CO(2)/HCO(3)(-) equilibrium and relatively high equilibrium availability of the acid anhydride (CO(2)) at neutral pH allows for rapid formation of the peroxymonocarbonate ion without strong acid catalysis. Formation of peroxymonocarbonate by the reaction of HCO(3)(-) with H(2)O(2) is significantly accelerated by carbonic anhydrase and the model complex Zn(II)L(H(2)O) (L = 1,4,7,10-tetraazacyclododecane).

摘要

过一碳酸盐(HCO(4)(-)在过氧化氢与碳酸氢盐反应中的动力学和机制在 pH 值 6-9 范围内进行了研究。采用双 pH 跃变法,首先将(13)C 标记的碳酸氢盐溶液酸化以产生(13)CO(2),然后在存在过氧化氢的情况下用碱将其带到更高的 pH 值。(13)C NMR 光谱的时间演化用于建立第二次 pH 跃变后碳酸氢盐和过一碳酸盐的竞争形成和随后的平衡。动力学模拟与碳酸氢盐与过氧化物反应的机制一致,其中通过碳酸氢盐的脱水初始形成 CO(2),然后通过 CO(2)与 H(2)O(2)的反应(过水化)及其共轭碱 HOO(-)(碱催化过水化)。由于中间产物 CO(2)的可用性增加,过一碳酸盐的形成速率随着 pH 值的降低而增加。HCO(4)(-)相对于水合产物 HCO(3)(-)的形成选择性随着 pH 值的增加而增加,这是由于 HOO(-)途径和较慢的整体平衡速率所致,这种 pH 依赖性允许估计 CO(2)与 H(2)O(2)和 HOO(-)反应的速率常数在 25°C(分别为 2 × 10(-2) M(-1) s(-1)和 280 M(-1) s(-1))。在 pH 8 时,HOO(-)和 H(2)O(2)途径的贡献相当。与许多其他常见的无机和有机酸的过水化不同,CO(2)/HCO(3)(-)平衡的简单性质和中性 pH 下酸酐(CO(2))的相对高平衡可用性允许在没有强酸催化的情况下快速形成过一碳酸盐离子。碳酸酐酶和模型配合物Zn(II)L(H(2)O)(L = 1,4,7,10-四氮杂环十二烷)显著加速了 HCO(3)(-)与 H(2)O(2)的反应形成过一碳酸盐。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验