Jelić Ž L, Milošević M V, Van de Vondel J, Silhanek A V
Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium.
Département de Physique, Université de Liège, Allée du 6-Août 17, B-4000 Liège, Belgium.
Sci Rep. 2015 Oct 1;5:14604. doi: 10.1038/srep14604.
Introducing artificial pinning centers is a well established strategy to trap quantum vortices and increase the maximal magnetic field and applied electric current that a superconductor can sustain without dissipation. In case of spatially periodic pinning, a clear enhancement of the superconducting critical current arises when commensurability between the vortex configurations and the pinning landscape occurs. With recent achievements in (ultrafast) optics and nanoengineered plasmonics it has become possible to exploit the interaction of light with superconductivity, and create not only spatially periodic imprints on the superconducting condensate, but also temporally periodic ones. Here we show that in the latter case, temporal matching phenomena develop, caused by stroboscopic commensurability between the characteristic frequency of the vortex motion under applied current and the frequency of the dynamic pinning. The matching resonances persist in a broad parameter space, including magnetic field, driving current, or material purity, giving rise to unusual features such as externally variable resistance/impedance and Shapiro steps in current-voltage characteristics. All features are tunable by the frequency of the dynamic pinning landscape. These findings open further exploration avenues for using flashing, spatially engineered, and/or mobile excitations on superconductors, permitting us to achieve advanced functionalities.
引入人工钉扎中心是一种成熟的策略,用于捕获量子涡旋,并提高超导体在无耗散情况下能够承受的最大磁场和施加电流。在空间周期性钉扎的情况下,当涡旋构型与钉扎势场之间出现可公度性时,超导临界电流会明显增强。随着(超快)光学和纳米工程等离子体学的最新进展,利用光与超导性的相互作用不仅可以在超导凝聚体上产生空间周期性印记,还可以产生时间周期性印记。在此我们表明,在后一种情况下,由于外加电流下涡旋运动的特征频率与动态钉扎频率之间的频闪可公度性,会出现时间匹配现象。匹配共振在包括磁场、驱动电流或材料纯度在内的广泛参数空间中持续存在,从而产生诸如外部可变电阻/阻抗以及电流 - 电压特性中的夏皮罗台阶等异常特征。所有这些特征都可以通过动态钉扎势场的频率进行调节。这些发现为在超导体上使用闪烁、空间工程化和/或移动激发开辟了进一步的探索途径,使我们能够实现先进的功能。