Gräf Tiago, Vrancken Bram, Maletich Junqueira Dennis, de Medeiros Rúbia Marília, Suchard Marc A, Lemey Philippe, Esteves de Matos Almeida Sabrina, Pinto Aguinaldo Roberto
Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil Centro de Desenvolvimento Científico e Tecnológico, Fundação Estadual de Produção e Pesquisa em Saúde, Porto Alegre, RS, Brazil
Department of Microbiology and Immunology, Rega Institute, KU Leuven-University of Leuven, Leuven, Belgium.
J Virol. 2015 Dec;89(24):12341-8. doi: 10.1128/JVI.01681-15. Epub 2015 Sep 30.
The phylogeographic history of the Brazilian HIV-1 subtype C (HIV-1C) epidemic is still unclear. Previous studies have mainly focused on the capital cities of Brazilian federal states, and the fact that HIV-1C infections increase at a higher rate than subtype B infections in Brazil calls for a better understanding of the process of spatial spread. A comprehensive sequence data set sampled across 22 Brazilian locations was assembled and analyzed. A Bayesian phylogeographic generalized linear model approach was used to reconstruct the spatiotemporal history of HIV-1C in Brazil, considering several potential explanatory predictors of the viral diffusion process. Analyses were performed on several subsampled data sets in order to mitigate potential sample biases. We reveal a central role for the city of Porto Alegre, the capital of the southernmost state, in the Brazilian HIV-1C epidemic (HIV-1C_BR), and the northward expansion of HIV-1C_BR could be linked to source populations with higher HIV-1 burdens and larger proportions of HIV-1C infections. The results presented here bring new insights to the continuing discussion about the HIV-1C epidemic in Brazil and raise an alternative hypothesis for its spatiotemporal history. The current work also highlights how sampling bias can confound phylogeographic analyses and demonstrates the importance of incorporating external information to protect against this.
Subtype C is responsible for the largest HIV infection burden worldwide, but our understanding of its transmission dynamics remains incomplete. Brazil witnessed a relatively recent introduction of HIV-1C compared to HIV-1B, but it swiftly spread throughout the south, where it now circulates as the dominant variant. The northward spread has been comparatively slow, and HIV-1B still prevails in that region. While epidemiological data and viral genetic analyses have both independently shed light on the dynamics of spread in isolation, their combination has not yet been explored. Here, we complement publically available sequences and new genetic data from 13 cities with epidemiological data to reconstruct the history of HIV-1C spread in Brazil. The combined approach results in more robust reconstructions and can protect against sampling bias. We found evidence for an alternative view of the HIV-1C spatiotemporal history in Brazil that, contrary to previous explanations, integrates seamlessly with other observational data.
巴西HIV-1 C亚型(HIV-1C)流行的系统发育地理历史仍不清楚。先前的研究主要集中在巴西联邦州的首府,而在巴西HIV-1C感染的增长率高于B亚型感染这一事实,要求我们更好地了解其空间传播过程。我们收集并分析了来自巴西22个地点的综合序列数据集。使用贝叶斯系统发育地理广义线性模型方法,考虑病毒扩散过程的几个潜在解释性预测因子,重建巴西HIV-1C的时空历史。对几个二次抽样数据集进行了分析,以减轻潜在的样本偏差。我们揭示了最南端州首府阿雷格里港在巴西HIV-1C流行(HIV-1C_BR)中的核心作用,并且HIV-1C_BR向北扩张可能与HIV-1负担较高且HIV-1C感染比例较大的源人群有关。本文给出的结果为关于巴西HIV-1C流行的持续讨论带来了新见解,并为其时空历史提出了另一种假设。当前的工作还强调了抽样偏差如何混淆系统发育地理分析,并证明了纳入外部信息以防止这种情况的重要性。
C亚型是全球HIV感染负担最大的亚型,但我们对其传播动态的理解仍不完整。与HIV-1B相比,巴西相对较晚引入HIV-1C,但它迅速在南部传播,现在已成为该地区的主要变体。向北传播相对较慢,HIV-1B在该地区仍然占主导地位。虽然流行病学数据和病毒基因分析都独立地揭示了各自传播动态,但尚未对它们的结合进行探索。在这里,我们将来自13个城市的公开可用序列和新的基因数据与流行病学数据相结合,以重建巴西HIV-1C的传播历史。这种综合方法能得出更可靠的重建结果,并可防止抽样偏差。我们发现了一种关于巴西HIV-1C时空历史的不同观点的证据,与先前的解释相反,它能与其他观测数据无缝整合。