Suppr超能文献

整合病毒遗传学和人类交通数据,预测人类 H3N2 流感的全球传播动态。

Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2.

机构信息

Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.

Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom ; Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America.

出版信息

PLoS Pathog. 2014 Feb 20;10(2):e1003932. doi: 10.1371/journal.ppat.1003932. eCollection 2014 Feb.

Abstract

Information on global human movement patterns is central to spatial epidemiological models used to predict the behavior of influenza and other infectious diseases. Yet it remains difficult to test which modes of dispersal drive pathogen spread at various geographic scales using standard epidemiological data alone. Evolutionary analyses of pathogen genome sequences increasingly provide insights into the spatial dynamics of influenza viruses, but to date they have largely neglected the wealth of information on human mobility, mainly because no statistical framework exists within which viral gene sequences and empirical data on host movement can be combined. Here, we address this problem by applying a phylogeographic approach to elucidate the global spread of human influenza subtype H3N2 and assess its ability to predict the spatial spread of human influenza A viruses worldwide. Using a framework that estimates the migration history of human influenza while simultaneously testing and quantifying a range of potential predictive variables of spatial spread, we show that the global dynamics of influenza H3N2 are driven by air passenger flows, whereas at more local scales spread is also determined by processes that correlate with geographic distance. Our analyses further confirm a central role for mainland China and Southeast Asia in maintaining a source population for global influenza diversity. By comparing model output with the known pandemic expansion of H1N1 during 2009, we demonstrate that predictions of influenza spatial spread are most accurate when data on human mobility and viral evolution are integrated. In conclusion, the global dynamics of influenza viruses are best explained by combining human mobility data with the spatial information inherent in sampled viral genomes. The integrated approach introduced here offers great potential for epidemiological surveillance through phylogeographic reconstructions and for improving predictive models of disease control.

摘要

全球人类活动模式的信息是用于预测流感和其他传染病行为的空间流行病学模型的核心。然而,仅使用标准流行病学数据,仍然难以测试哪种传播模式在各种地理尺度上驱动病原体的传播。病原体基因组序列的进化分析越来越多地提供了流感病毒空间动态的深入了解,但迄今为止,它们在很大程度上忽略了有关人类流动的丰富信息,主要是因为不存在可以将病毒基因序列和宿主运动的经验数据结合在一起的统计框架。在这里,我们通过应用系统地理学方法来解决这个问题,以阐明人类流感亚型 H3N2 的全球传播,并评估其预测全球人类甲型流感病毒空间传播的能力。我们使用一种估计人类流感迁移历史的框架,同时测试和量化空间传播的一系列潜在预测变量,结果表明,流感 H3N2 的全球动态是由航空旅客流量驱动的,而在更局部的尺度上,传播也由与地理距离相关的过程决定。我们的分析进一步证实了中国大陆和东南亚在维持全球流感多样性的源人群方面的核心作用。通过将模型输出与 2009 年 H1N1 的已知大流行扩展进行比较,我们证明,当整合有关人类流动性和病毒进化的数据时,流感空间传播的预测最为准确。总之,流感病毒的全球动态最好通过将人类流动数据与采样病毒基因组中固有的空间信息相结合来解释。这里介绍的综合方法通过系统地理学重建为流行病学监测提供了巨大的潜力,并为改善疾病控制的预测模型提供了潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验