Hawkes N P, Thomas D J, Taylor G C
National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK
National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK.
Radiat Prot Dosimetry. 2016 Sep;170(1-4):35-8. doi: 10.1093/rpd/ncv409. Epub 2015 Sep 29.
The response of neutron personal dosemeters as a function of neutron energy and angle of incidence is typically measured by mounting the dosemeters on a slab phantom and exposing them to neutrons from an accelerator-based or radionuclide source. The phantom is placed close to the source (75 cm) so that the effect of scattered neutrons is negligible. It is usual to mount several dosemeters on the phantom together. Because the source is close, the source distance and the neutron incidence angle vary significantly over the phantom face, and each dosemeter may receive a different dose equivalent. This is particularly important when the phantom is angled away from normal incidence. With accelerator-produced neutrons, the neutron energy and fluence vary with emission angle relative to the charged particle beam that produces the neutrons, contributing further to differences in dose equivalent, particularly when the phantom is located at other than the straight-ahead position (0° to the beam). Corrections for these effects are quantified and discussed in this article.
通常通过将中子个人剂量计安装在平板模体上,并使其暴露于基于加速器或放射性核素源产生的中子中来测量中子个人剂量计的响应作为中子能量和入射角的函数。将模体放置在靠近源(75厘米)的位置,以使散射中子的影响可以忽略不计。通常会在模体上一起安装多个剂量计。由于源很近,源距离和中子入射角在模体表面上会有显著变化,并且每个剂量计可能会接收到不同的剂量当量。当模体偏离垂直入射角度时,这一点尤为重要。对于加速器产生的中子,中子能量和注量会随着相对于产生中子的带电粒子束的发射角度而变化,这进一步导致了剂量当量的差异,特别是当模体位于非正前方位置(相对于束流为0°)时。本文对这些影响的校正进行了量化和讨论。