Suppr超能文献

大洋中脊侧翼玄武岩玻璃的辉长石化作用:对大洋地壳内生态系统生物能量学的启示

Palagonitization of Basalt Glass in the Flanks of Mid-Ocean Ridges: Implications for the Bioenergetics of Oceanic Intracrustal Ecosystems.

作者信息

Türke Andreas, Nakamura Kentaro, Bach Wolfgang

机构信息

1 Department of Geosciences and MARUM, University of Bremen , Bremen, Germany .

2 Department of Systems Innovation, School of Engineering, The University of Tokyo , Tokyo, Japan .

出版信息

Astrobiology. 2015 Oct;15(10):793-803. doi: 10.1089/ast.2014.1255. Epub 2015 Oct 1.

Abstract

When basalt is exposed to oxygenated aqueous solutions, rims of palagonite form along fractures at the expense of glass. We employed electron microprobe and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of fresh glass and adjacent palagonite crusts to determine the geochemical changes involved in palagonite formation. Samples were retrieved from drill cores taken in the North Pond Area, located on the western flank of the Mid-Atlantic Ridge at 22°45'N and 46°05'W. We also analyzed whole rock powders to determine the overall crust-seawater exchange in a young ridge flank. Radioactive elements are enriched in palagonite relative to fresh glass, reaching concentrations where radiolytic production of molecular hydrogen (H2) may be a significant energy source. Based on these results, we hypothesize that microbial ecosystems in ridge flank habitats undergo a transition in the principal energy carrier, fueling carbon fixation from Fe oxidation in very young crust to H2 consumption in older crust. Unless the H2 is swept away by rapid fluid flow (i.e., in young flanks), it may easily accumulate to levels high enough to support chemolithoautotrophic life. In older flanks, crustal sealing and sediment accumulation have slowed down seawater circulation, and the significance of radiolytically produced H2 for catalytic energy supply is expected to increase greatly. Similar habitats on other planetary surfaces are theoretically possible, as accumulation of radiolytically produced hydrogen merely requires the presence of H2O molecules and a porous medium, from which the hydrogen is not lost.

摘要

当玄武岩暴露于含氧水溶液中时,玻璃会被消耗,沿裂缝形成绿脱石边缘。我们采用电子微探针和激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)对新鲜玻璃和相邻的绿脱石外壳进行分析,以确定绿脱石形成过程中涉及的地球化学变化。样本取自位于北纬22°45′、西经46°05′的大西洋中脊西侧北池塘区域的钻孔岩芯。我们还分析了全岩粉末,以确定年轻洋脊侧翼的整体地壳-海水交换情况。相对于新鲜玻璃,绿脱石中放射性元素富集,其浓度达到分子氢(H₂)的辐射分解产生可能成为重要能量来源的程度。基于这些结果,我们推测洋脊侧翼栖息地的微生物生态系统在主要能量载体方面会发生转变,从极年轻地壳中通过铁氧化进行碳固定,转变为在较老地壳中消耗氢气。除非氢气被快速的流体流动带走(即在年轻侧翼),否则它可能很容易积累到足以支持化能自养生命的水平。在较老的侧翼,地壳封闭和沉积物堆积减缓了海水循环,预计辐射分解产生的氢气对催化能量供应的重要性将大大增加。理论上,其他行星表面也可能存在类似的栖息地,因为辐射分解产生的氢气的积累仅需要存在水分子和多孔介质,且氢气不会从中流失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验