Department of Chemical System Engineering, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
Global Research Center for Environment and Energy Based on Nano1materials Science (GREEN), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba-city, Ibaraki 305-0044, Japan.
J Am Chem Soc. 2015 Oct 14;137(40):12780-3. doi: 10.1021/jacs.5b08329. Epub 2015 Oct 2.
In p/n photoelectrochemical (PEC) cell systems, a low onset potential for the photoanode, as well as a high photocurrent, are critical for efficient water splitting. Here, we report a Mg-Zr cosubstituted Ta3N5 (Ta3N5:Mg+Zr) photoanode, designed to provide a more negative onset potential for PEC water splitting. The anodic photocurrent onset on Ta3N5:Mg+Zr was 0.55 V(RHE) under AM 1.5G-simulated sunlight, which represented a negative shift from the ca. 0.8 V(RHE) for pure Ta3N5. This negative shift in the onset potential of PEC water splitting was attributed to the change in the bandgap potential due to partial substitution by the foreign ions Mg(2+) and/or Zr(4+).
在 p/n 光电化学 (PEC) 电池系统中,对于高效的水分解,光阳极的低起始电位以及高光电流至关重要。在这里,我们报告了一种 Mg-Zr 共取代 Ta3N5(Ta3N5:Mg+Zr)光阳极,旨在为 PEC 水分解提供更负的起始电位。在 AM 1.5G 模拟太阳光下,Ta3N5:Mg+Zr 的阳极光电流起始电位为 0.55 V(RHE),相对于纯 Ta3N5 的约 0.8 V(RHE),呈现出负移。这种 PEC 水分解起始电位的负移归因于由于外来离子 Mg(2+)和/或 Zr(4+)的部分取代导致能带隙电位的变化。