Luciano Michelle, Marioni Riccardo E, Valdés Hernández Maria, Muñoz Maniega Susana, Hamilton Iona F, Royle Natalie A, Chauhan Ganesh, Bis Joshua C, Debette Stephanie, DeCarli Charles, Fornage Myriam, Schmidt Reinhold, Ikram M Arfan, Launer Lenore J, Seshadri Sudha, Bastin Mark E, Porteous David J, Wardlaw Joanna, Deary Ian J
Centre for Cognitive Ageing and Cognitive Epidemiology,University of Edinburgh,Edinburgh,UK.
Inserm Research Center for Epidemiology and Biostatistics (U897)-Team Neuroepidemiology,Bordeaux,France.
Twin Res Hum Genet. 2015 Dec;18(6):738-45. doi: 10.1017/thg.2015.71. Epub 2015 Oct 2.
Structural brain magnetic resonance imaging (MRI) traits share part of their genetic variance with cognitive traits. Here, we use genetic association results from large meta-analytic studies of genome-wide association (GWA) for brain infarcts (BI), white matter hyperintensities, intracranial, hippocampal, and total brain volumes to estimate polygenic scores for these traits in three Scottish samples: Generation Scotland: Scottish Family Health Study (GS:SFHS), and the Lothian Birth Cohorts of 1936 (LBC1936) and 1921 (LBC1921). These five brain MRI trait polygenic scores were then used to: (1) predict corresponding MRI traits in the LBC1936 (numbers ranged 573 to 630 across traits), and (2) predict cognitive traits in all three cohorts (in 8,115-8,250 persons). In the LBC1936, all MRI phenotypic traits were correlated with at least one cognitive measure, and polygenic prediction of MRI traits was observed for intracranial volume. Meta-analysis of the correlations between MRI polygenic scores and cognitive traits revealed a significant negative correlation (maximal r = 0.08) between the HV polygenic score and measures of global cognitive ability collected in childhood and in old age in the Lothian Birth Cohorts. The lack of association to a related general cognitive measure when including the GS:SFHS points to either type 1 error or the importance of using prediction samples that closely match the demographics of the GWA samples from which prediction is based. Ideally, these analyses should be repeated in larger samples with data on both MRI and cognition, and using MRI GWA results from even larger meta-analysis studies.
大脑结构磁共振成像(MRI)特征与认知特征共享部分遗传变异。在此,我们利用大脑梗死(BI)、白质高信号、颅内、海马体及全脑体积的全基因组关联(GWA)大型荟萃分析研究的遗传关联结果,来估算这三个苏格兰样本中这些特征的多基因分数:苏格兰世代研究:苏格兰家庭健康研究(GS:SFHS),以及1936年(LBC1936)和1921年(LBC1921)的洛锡安出生队列。然后,使用这五个大脑MRI特征多基因分数来:(1)预测LBC1936中相应的MRI特征(各特征的数量范围为573至630),以及(2)预测所有三个队列中的认知特征(8115 - 8250人)。在LBC1936中,所有MRI表型特征均与至少一种认知测量相关,并且观察到颅内体积的MRI特征存在多基因预测。对MRI多基因分数与认知特征之间的相关性进行荟萃分析发现,洛锡安出生队列中,童年和老年时收集的全球认知能力测量值与海马体体积多基因分数之间存在显著负相关(最大r = 0.08)。纳入GS:SFHS时与相关的一般认知测量缺乏关联,这表明可能存在I型错误,或者使用与预测所基于的GWA样本人口统计学特征紧密匹配的预测样本非常重要。理想情况下,这些分析应在具有MRI和认知数据的更大样本中重复进行,并使用来自更大规模荟萃分析研究的MRI GWA结果。