Lee Donghyung, Williamson Vernell S, Bigdeli T Bernard, Riley Brien P, Webb Bradley T, Fanous Ayman H, Kendler Kenneth S, Vladimirov Vladimir I, Bacanu Silviu-Alin
Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23298, USA.
Bioinformatics. 2016 Jan 15;32(2):295-7. doi: 10.1093/bioinformatics/btv567. Epub 2015 Oct 1.
To increase detection power, gene level analysis methods are used to aggregate weak signals. To greatly increase computational efficiency, most methods use as input summary statistics from genome-wide association studies (GWAS). Subsequently, gene statistics are constructed using linkage disequilibrium (LD) patterns from a relevant reference panel. However, all methods, including our own Joint Effect on Phenotype of eQTL/functional single nucleotide polymorphisms (SNPs) associated with a Gene (JEPEG), assume homogeneous panels, e.g. European. However, this renders these tools unsuitable for the analysis of large cosmopolitan cohorts.
We propose a JEPEG extension, JEPEGMIX, which similar to one of our software tools, Direct Imputation of summary STatistics of unmeasured SNPs from MIXed ethnicity cohorts, is capable of estimating accurate LD patterns for cosmopolitan cohorts. JEPEGMIX uses this accurate LD estimates to (i) impute the summary statistics at unmeasured functional variants and (ii) test for the joint effect of all measured and imputed functional variants which are associated with a gene. We illustrate the performance of our tool by analyzing the GWAS meta-analysis summary statistics from the multi-ethnic Psychiatric Genomics Consortium Schizophrenia stage 2 cohort. This practical application supports the immune system being one of the main drivers of the process leading to schizophrenia.
Software, annotation database and examples are available at http://dleelab.github.io/jepegmix/.
Supplementary material is available at Bioinformatics online.
为了提高检测能力,基因水平分析方法被用于聚合微弱信号。为了大幅提高计算效率,大多数方法使用全基因组关联研究(GWAS)的汇总统计数据作为输入。随后,利用相关参考面板中的连锁不平衡(LD)模式构建基因统计量。然而,包括我们自己的与基因相关的eQTL/功能性单核苷酸多态性(SNP)对表型的联合效应(JEPEG)在内的所有方法,都假定面板是同质的,例如欧洲人。然而,这使得这些工具不适用于分析大型国际化队列。
我们提出了JEPEG的扩展版本JEPEGMIX,它类似于我们的一个软件工具——混合种族队列中未测量SNP的汇总统计量直接估算,能够估算国际化队列的准确LD模式。JEPEGMIX使用这种准确的LD估算来(i)估算未测量功能变异处的汇总统计量,以及(ii)检验与一个基因相关的所有测量和估算功能变异的联合效应。我们通过分析多民族精神基因组学联盟精神分裂症第二阶段队列的GWAS荟萃分析汇总统计量来说明我们工具的性能。这个实际应用支持免疫系统是导致精神分裂症过程的主要驱动因素之一。
软件、注释数据库和示例可在http://dleelab.github.io/jepegmix/获取。
补充材料可在《生物信息学》在线获取。