Suppr超能文献

JEPEGMIX:全球人群队列中功能性单核苷酸多态性的基因水平联合分析。

JEPEGMIX: gene-level joint analysis of functional SNPs in cosmopolitan cohorts.

作者信息

Lee Donghyung, Williamson Vernell S, Bigdeli T Bernard, Riley Brien P, Webb Bradley T, Fanous Ayman H, Kendler Kenneth S, Vladimirov Vladimir I, Bacanu Silviu-Alin

机构信息

Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23298, USA.

出版信息

Bioinformatics. 2016 Jan 15;32(2):295-7. doi: 10.1093/bioinformatics/btv567. Epub 2015 Oct 1.

Abstract

MOTIVATION

To increase detection power, gene level analysis methods are used to aggregate weak signals. To greatly increase computational efficiency, most methods use as input summary statistics from genome-wide association studies (GWAS). Subsequently, gene statistics are constructed using linkage disequilibrium (LD) patterns from a relevant reference panel. However, all methods, including our own Joint Effect on Phenotype of eQTL/functional single nucleotide polymorphisms (SNPs) associated with a Gene (JEPEG), assume homogeneous panels, e.g. European. However, this renders these tools unsuitable for the analysis of large cosmopolitan cohorts.

RESULTS

We propose a JEPEG extension, JEPEGMIX, which similar to one of our software tools, Direct Imputation of summary STatistics of unmeasured SNPs from MIXed ethnicity cohorts, is capable of estimating accurate LD patterns for cosmopolitan cohorts. JEPEGMIX uses this accurate LD estimates to (i) impute the summary statistics at unmeasured functional variants and (ii) test for the joint effect of all measured and imputed functional variants which are associated with a gene. We illustrate the performance of our tool by analyzing the GWAS meta-analysis summary statistics from the multi-ethnic Psychiatric Genomics Consortium Schizophrenia stage 2 cohort. This practical application supports the immune system being one of the main drivers of the process leading to schizophrenia.

AVAILABILITY AND IMPLEMENTATION

Software, annotation database and examples are available at http://dleelab.github.io/jepegmix/.

CONTACT

donghyung.lee@vcuhealth.org

SUPPLEMENTARY INFORMATION

Supplementary material is available at Bioinformatics online.

摘要

动机

为了提高检测能力,基因水平分析方法被用于聚合微弱信号。为了大幅提高计算效率,大多数方法使用全基因组关联研究(GWAS)的汇总统计数据作为输入。随后,利用相关参考面板中的连锁不平衡(LD)模式构建基因统计量。然而,包括我们自己的与基因相关的eQTL/功能性单核苷酸多态性(SNP)对表型的联合效应(JEPEG)在内的所有方法,都假定面板是同质的,例如欧洲人。然而,这使得这些工具不适用于分析大型国际化队列。

结果

我们提出了JEPEG的扩展版本JEPEGMIX,它类似于我们的一个软件工具——混合种族队列中未测量SNP的汇总统计量直接估算,能够估算国际化队列的准确LD模式。JEPEGMIX使用这种准确的LD估算来(i)估算未测量功能变异处的汇总统计量,以及(ii)检验与一个基因相关的所有测量和估算功能变异的联合效应。我们通过分析多民族精神基因组学联盟精神分裂症第二阶段队列的GWAS荟萃分析汇总统计量来说明我们工具的性能。这个实际应用支持免疫系统是导致精神分裂症过程的主要驱动因素之一。

可用性与实现

软件、注释数据库和示例可在http://dleelab.github.io/jepegmix/获取。

联系方式

donghyung.lee@vcuhealth.org

补充信息

补充材料可在《生物信息学》在线获取。

相似文献

引用本文的文献

4
Meta-Analysis of Genetic Influences on Initial Alcohol Sensitivity.遗传对初始酒精敏感性影响的荟萃分析。
Alcohol Clin Exp Res. 2018 Dec;42(12):2349-2359. doi: 10.1111/acer.13896. Epub 2018 Oct 28.

本文引用的文献

3
DISSCO: direct imputation of summary statistics allowing covariates.DISSCO:允许协变量的汇总统计量直接插补
Bioinformatics. 2015 Aug 1;31(15):2434-42. doi: 10.1093/bioinformatics/btv168. Epub 2015 Mar 24.
7
DIST: direct imputation of summary statistics for unmeasured SNPs.直接对未测量的 SNP 进行汇总统计的推断。
Bioinformatics. 2013 Nov 15;29(22):2925-7. doi: 10.1093/bioinformatics/btt500. Epub 2013 Aug 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验