Suppr超能文献

ABO3钙钛矿固体的分类:一项机器学习研究。

Classification of ABO3 perovskite solids: a machine learning study.

作者信息

Pilania G, Balachandran P V, Gubernatis J E, Lookman T

机构信息

Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

出版信息

Acta Crystallogr B Struct Sci Cryst Eng Mater. 2015 Oct;71(Pt 5):507-13. doi: 10.1107/S2052520615013979. Epub 2015 Sep 19.

Abstract

We explored the use of machine learning methods for classifying whether a particular ABO3 chemistry forms a perovskite or non-perovskite structured solid. Starting with three sets of feature pairs (the tolerance and octahedral factors, the A and B ionic radii relative to the radius of O, and the bond valence distances between the A and B ions from the O atoms), we used machine learning to create a hyper-dimensional partial dependency structure plot using all three feature pairs or any two of them. Doing so increased the accuracy of our predictions by 2-3 percentage points over using any one pair. We also included the Mendeleev numbers of the A and B atoms to this set of feature pairs. Doing this and using the capabilities of our machine learning algorithm, the gradient tree boosting classifier, enabled us to generate a new type of structure plot that has the simplicity of one based on using just the Mendeleev numbers, but with the added advantages of having a higher accuracy and providing a measure of likelihood of the predicted structure.

摘要

我们探索了使用机器学习方法来分类特定的ABO3化学物质是否形成钙钛矿结构或非钙钛矿结构的固体。从三组特征对(容忍度和八面体因子、A和B离子相对于O半径的离子半径以及A和B离子与O原子之间的键价距离)开始,我们使用机器学习来创建一个超维部分依赖结构图,使用所有三组特征对或其中任意两组。这样做比使用任何一对特征对将我们预测的准确率提高了2-3个百分点。我们还将A和B原子的门捷列夫数纳入了这组特征对。这样做并利用我们的机器学习算法梯度树提升分类器的能力,使我们能够生成一种新型的结构图,它具有仅基于门捷列夫数的结构图的简单性,但具有更高的准确性和提供预测结构可能性度量的额外优点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验