Zhao Jie, Wang Xiaoyan, Li Haobo, Xu Xiaoyong
College of Chemical Engineering, Nanjing Tech University Nanjing Jiangsu 211816 China
School of Computer Science, Nanjing Audit University Nanjing Jiangsu 211815 China
RSC Adv. 2024 Jan 26;14(6):3909-3922. doi: 10.1039/d3ra08591k. eCollection 2024 Jan 23.
Perovskite oxides are extensively utilized in energy storage and conversion. However, they are conventionally screened time-consuming and cost-intensive experimental approaches and density functional theory. Herein, interpretable machine learning is applied to identify perovskite oxides from virtual perovskite-type combinations by constructing classification and regression models to predict their thermodynamic stability and energy above the convex hull (), respectively, and interpreting the models using SHapley Additive exPlanations. The highest occupied molecular orbital energy and the elastic modulus of the B-site elements of perovskite oxides are the top two features for stability prediction, whereas the Stability Label and features involving the elastic modulus and ionic radius are crucial for regression. A classification model, which displays an accuracy of 0.919, precision of 0.937, F1-score of 0.932, and recall of 0.935, screens 682 143 stable perovskite oxides from 1 126 668 virtual perovskite-type combinations. The values of the predicted stable perovskites are forecasted by a regression model with a coefficient of determination of 0.916, and root mean square error of 24.2 meV atom. Good agreement is observed between the regression model predicted and density functional theory-calculated values.
钙钛矿氧化物被广泛应用于能量存储和转换。然而,传统上它们是通过耗时且成本高昂的实验方法以及密度泛函理论来筛选的。在此,通过构建分类和回归模型分别预测其热力学稳定性和凸包以上能量(),并使用SHapley加性解释对模型进行解释,将可解释机器学习应用于从虚拟钙钛矿型组合中识别钙钛矿氧化物。钙钛矿氧化物B位元素的最高占据分子轨道能量和弹性模量是稳定性预测的前两个特征,而稳定性标签以及涉及弹性模量和离子半径的特征对于回归至关重要。一个分类模型的准确率为0.919,精确率为0.937,F1分数为0.932,召回率为0.935,从1126668个虚拟钙钛矿型组合中筛选出682143种稳定的钙钛矿氧化物。预测的稳定钙钛矿的 值由一个回归模型预测,该模型的决定系数为0.916,均方根误差为24.2 meV/原子。回归模型预测值与密度泛函理论计算的 值之间观察到良好的一致性。