Suppr超能文献

基于复杂网络的技术来识别时空系统中的极端事件和(突发)转变。

Complex network based techniques to identify extreme events and (sudden) transitions in spatio-temporal systems.

机构信息

Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany.

出版信息

Chaos. 2015 Sep;25(9):097609. doi: 10.1063/1.4916924.

Abstract

We present here two promising techniques for the application of the complex network approach to continuous spatio-temporal systems that have been developed in the last decade and show large potential for future application and development of complex systems analysis. First, we discuss the transforming of a time series from such systems to a complex network. The natural approach is to calculate the recurrence matrix and interpret such as the adjacency matrix of an associated complex network, called recurrence network. Using complex network measures, such as transitivity coefficient, we demonstrate that this approach is very efficient for identifying qualitative transitions in observational data, e.g., when analyzing paleoclimate regime transitions. Second, we demonstrate the use of directed spatial networks constructed from spatio-temporal measurements of such systems that can be derived from the synchronized-in-time occurrence of extreme events in different spatial regions. Although there are many possibilities to investigate such spatial networks, we present here the new measure of network divergence and how it can be used to develop a prediction scheme of extreme rainfall events.

摘要

我们在这里介绍了两种有前途的方法,用于将复杂网络方法应用于过去十年中开发的连续时空系统,并展示了在复杂系统分析的未来应用和发展方面的巨大潜力。首先,我们讨论了将来自此类系统的时间序列转换为复杂网络的问题。自然的方法是计算递归矩阵,并将其解释为相关复杂网络的邻接矩阵,称为递归网络。使用复杂网络度量,如传递系数,我们证明了这种方法对于识别观测数据中的定性转变非常有效,例如在分析古气候状态转变时。其次,我们展示了如何使用来自这些系统的时空测量构建有向空间网络,这些网络可以从不同空间区域的极端事件在时间上的同步发生中得出。尽管有许多可能性可以研究这种空间网络,但我们在这里介绍了网络发散的新度量及其如何用于开发极端降雨事件的预测方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验