Suppr超能文献

在政策扩散过程中检测因果关系。

Detecting causality in policy diffusion processes.

作者信息

Grabow Carsten, Macinko James, Silver Diana, Porfiri Maurizio

机构信息

Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, New York 11201, USA.

Department of Community Health Sciences and Department of Health Policy and Management, Fielding School of Public Health, University of California, 650 Charles Young Dr., Los Angeles, California 90095, USA.

出版信息

Chaos. 2016 Aug;26(8):083113. doi: 10.1063/1.4961067.

Abstract

A universal question in network science entails learning about the topology of interaction from collective dynamics. Here, we address this question by examining diffusion of laws across US states. We propose two complementary techniques to unravel determinants of this diffusion process: information-theoretic union transfer entropy and event synchronization. In order to systematically investigate their performance on law activity data, we establish a new stochastic model to generate synthetic law activity data based on plausible networks of interactions. Through extensive parametric studies, we demonstrate the ability of these methods to reconstruct networks, varying in size, link density, and degree heterogeneity. Our results suggest that union transfer entropy should be preferred for slowly varying processes, which may be associated with policies attending to specific local problems that occur only rarely or with policies facing high levels of opposition. In contrast, event synchronization is effective for faster enactment rates, which may be related to policies involving Federal mandates or incentives. This study puts forward a data-driven toolbox to explain the determinants of legal activity applicable to political science, across dynamical systems, information theory, and complex networks.

摘要

网络科学中的一个普遍问题是从集体动力学中了解相互作用的拓扑结构。在此,我们通过研究法律在美国各州的传播来解决这个问题。我们提出了两种互补的技术来揭示这种传播过程的决定因素:信息论联合转移熵和事件同步。为了系统地研究它们在法律活动数据上的性能,我们建立了一个新的随机模型,以基于合理的相互作用网络生成合成法律活动数据。通过广泛的参数研究,我们展示了这些方法重建大小、链接密度和度异质性各不相同的网络的能力。我们的结果表明,对于缓慢变化的过程,联合转移熵应该是首选,这可能与处理仅偶尔出现的特定局部问题的政策或面临高度反对的政策有关。相比之下,事件同步对于更快的颁布率是有效的,这可能与涉及联邦授权或激励措施的政策有关。本研究提出了一个数据驱动的工具箱,以解释适用于政治学的法律活动的决定因素,涵盖动态系统、信息论和复杂网络。

相似文献

4
Collective dynamics of a network of ratchets coupled via a stochastic dynamical environment.通过随机动力学环境耦合的棘轮网络的集体动力学。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022913. doi: 10.1103/PhysRevE.87.022913. Epub 2013 Feb 22.

本文引用的文献

2
On causality of extreme events.论极端事件的因果关系。
PeerJ. 2016 Jun 7;4:e2111. doi: 10.7717/peerj.2111. eCollection 2016.
5
Diffusion of Impaired Driving Laws Among US States.美国各州酒后驾车法律的传播情况。
Am J Public Health. 2015 Sep;105(9):1893-900. doi: 10.2105/AJPH.2015.302670. Epub 2015 Jul 16.
10
Escaping the curse of dimensionality in estimating multivariate transfer entropy.在估计多元传递熵时摆脱维度诅咒。
Phys Rev Lett. 2012 Jun 22;108(25):258701. doi: 10.1103/PhysRevLett.108.258701. Epub 2012 Jun 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验