Grabow Carsten, Macinko James, Silver Diana, Porfiri Maurizio
Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, New York 11201, USA.
Department of Community Health Sciences and Department of Health Policy and Management, Fielding School of Public Health, University of California, 650 Charles Young Dr., Los Angeles, California 90095, USA.
Chaos. 2016 Aug;26(8):083113. doi: 10.1063/1.4961067.
A universal question in network science entails learning about the topology of interaction from collective dynamics. Here, we address this question by examining diffusion of laws across US states. We propose two complementary techniques to unravel determinants of this diffusion process: information-theoretic union transfer entropy and event synchronization. In order to systematically investigate their performance on law activity data, we establish a new stochastic model to generate synthetic law activity data based on plausible networks of interactions. Through extensive parametric studies, we demonstrate the ability of these methods to reconstruct networks, varying in size, link density, and degree heterogeneity. Our results suggest that union transfer entropy should be preferred for slowly varying processes, which may be associated with policies attending to specific local problems that occur only rarely or with policies facing high levels of opposition. In contrast, event synchronization is effective for faster enactment rates, which may be related to policies involving Federal mandates or incentives. This study puts forward a data-driven toolbox to explain the determinants of legal activity applicable to political science, across dynamical systems, information theory, and complex networks.
网络科学中的一个普遍问题是从集体动力学中了解相互作用的拓扑结构。在此,我们通过研究法律在美国各州的传播来解决这个问题。我们提出了两种互补的技术来揭示这种传播过程的决定因素:信息论联合转移熵和事件同步。为了系统地研究它们在法律活动数据上的性能,我们建立了一个新的随机模型,以基于合理的相互作用网络生成合成法律活动数据。通过广泛的参数研究,我们展示了这些方法重建大小、链接密度和度异质性各不相同的网络的能力。我们的结果表明,对于缓慢变化的过程,联合转移熵应该是首选,这可能与处理仅偶尔出现的特定局部问题的政策或面临高度反对的政策有关。相比之下,事件同步对于更快的颁布率是有效的,这可能与涉及联邦授权或激励措施的政策有关。本研究提出了一个数据驱动的工具箱,以解释适用于政治学的法律活动的决定因素,涵盖动态系统、信息论和复杂网络。